McKade S. Roberts, Sajad Karami, Luis J. Bastarrachea
{"title":"紫外线-A 光脱水:针对革兰氏阳性和革兰氏阴性细菌的微生物灭活动力学","authors":"McKade S. Roberts, Sajad Karami, Luis J. Bastarrachea","doi":"10.1111/jfpe.14747","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>UV-A light exposure (365 nm, 4.6 ± 0.2 mW/cm<sup>2</sup>) was combined with low relative humidity (RH) air flow at room temperature to dehydrate sweet potatoes and reduce the population of inoculated bacteria. Control samples underwent dehydration with low RH air at room temperature and in the absence of UV-A light to assess the importance of UV-A light in the dehydration and microbial reduction processes. The UV-A light-dehydrated sweet potatoes resulted in the removal of approximately 97.2% ± 2% of the original mass of water, which was significantly higher than the control samples. Infrared spectroscopy analyses confirmed the preservation of the physical and chemical integrity of the UV-A light-dehydrated samples. Despite the absence of pretreatments for enzyme inactivation, the UV-A light-dehydrated sweet potato did not exhibit a decrease in luminosity or darkening of color often associated with dehydration. Additionally, the utilization of UV-A light for the dehydration of sweet potatoes inoculated with ~6 log(CFU/g<sub>Dry solids</sub>) of <i>Escherichia coli</i> K12 resulted in a 99.9% ± 0.1% or 3.1 ± 0.5 log(CFU/g<sub>Dry solids</sub>) reduction with only a 92.2% ± 0.1% or 1.3 ± 0.5 log(CFU/g<sub>Dry solids</sub>) reduction resulting from the control samples dehydrated without UV-A exposure. In the case of samples inoculated with ~6 log(CFU/g<sub>Dry solids</sub>) of <i>Listeria innocua</i> L2 there was a 99.2% ± 0.5% or 2.2 ± 0.3 log(CFU/g<sub>Dry solids</sub>) reduction when UV-A light was utilized and only a 60.9% ± 10.3% or 0.4 ± 0.1 log(CFU/g<sub>Dry solids</sub>) reduction when samples were dehydrated in its absence.</p>\n </div>","PeriodicalId":15932,"journal":{"name":"Journal of Food Process Engineering","volume":"47 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UV-A Light Dehydration: Kinetics of Microbial Inactivation Against Gram-Positive and Gram-Negative Bacteria\",\"authors\":\"McKade S. Roberts, Sajad Karami, Luis J. Bastarrachea\",\"doi\":\"10.1111/jfpe.14747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>UV-A light exposure (365 nm, 4.6 ± 0.2 mW/cm<sup>2</sup>) was combined with low relative humidity (RH) air flow at room temperature to dehydrate sweet potatoes and reduce the population of inoculated bacteria. Control samples underwent dehydration with low RH air at room temperature and in the absence of UV-A light to assess the importance of UV-A light in the dehydration and microbial reduction processes. The UV-A light-dehydrated sweet potatoes resulted in the removal of approximately 97.2% ± 2% of the original mass of water, which was significantly higher than the control samples. Infrared spectroscopy analyses confirmed the preservation of the physical and chemical integrity of the UV-A light-dehydrated samples. Despite the absence of pretreatments for enzyme inactivation, the UV-A light-dehydrated sweet potato did not exhibit a decrease in luminosity or darkening of color often associated with dehydration. Additionally, the utilization of UV-A light for the dehydration of sweet potatoes inoculated with ~6 log(CFU/g<sub>Dry solids</sub>) of <i>Escherichia coli</i> K12 resulted in a 99.9% ± 0.1% or 3.1 ± 0.5 log(CFU/g<sub>Dry solids</sub>) reduction with only a 92.2% ± 0.1% or 1.3 ± 0.5 log(CFU/g<sub>Dry solids</sub>) reduction resulting from the control samples dehydrated without UV-A exposure. In the case of samples inoculated with ~6 log(CFU/g<sub>Dry solids</sub>) of <i>Listeria innocua</i> L2 there was a 99.2% ± 0.5% or 2.2 ± 0.3 log(CFU/g<sub>Dry solids</sub>) reduction when UV-A light was utilized and only a 60.9% ± 10.3% or 0.4 ± 0.1 log(CFU/g<sub>Dry solids</sub>) reduction when samples were dehydrated in its absence.</p>\\n </div>\",\"PeriodicalId\":15932,\"journal\":{\"name\":\"Journal of Food Process Engineering\",\"volume\":\"47 10\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Process Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.14747\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Process Engineering","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.14747","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
UV-A Light Dehydration: Kinetics of Microbial Inactivation Against Gram-Positive and Gram-Negative Bacteria
UV-A light exposure (365 nm, 4.6 ± 0.2 mW/cm2) was combined with low relative humidity (RH) air flow at room temperature to dehydrate sweet potatoes and reduce the population of inoculated bacteria. Control samples underwent dehydration with low RH air at room temperature and in the absence of UV-A light to assess the importance of UV-A light in the dehydration and microbial reduction processes. The UV-A light-dehydrated sweet potatoes resulted in the removal of approximately 97.2% ± 2% of the original mass of water, which was significantly higher than the control samples. Infrared spectroscopy analyses confirmed the preservation of the physical and chemical integrity of the UV-A light-dehydrated samples. Despite the absence of pretreatments for enzyme inactivation, the UV-A light-dehydrated sweet potato did not exhibit a decrease in luminosity or darkening of color often associated with dehydration. Additionally, the utilization of UV-A light for the dehydration of sweet potatoes inoculated with ~6 log(CFU/gDry solids) of Escherichia coli K12 resulted in a 99.9% ± 0.1% or 3.1 ± 0.5 log(CFU/gDry solids) reduction with only a 92.2% ± 0.1% or 1.3 ± 0.5 log(CFU/gDry solids) reduction resulting from the control samples dehydrated without UV-A exposure. In the case of samples inoculated with ~6 log(CFU/gDry solids) of Listeria innocua L2 there was a 99.2% ± 0.5% or 2.2 ± 0.3 log(CFU/gDry solids) reduction when UV-A light was utilized and only a 60.9% ± 10.3% or 0.4 ± 0.1 log(CFU/gDry solids) reduction when samples were dehydrated in its absence.
期刊介绍:
This international research journal focuses on the engineering aspects of post-production handling, storage, processing, packaging, and distribution of food. Read by researchers, food and chemical engineers, and industry experts, this is the only international journal specifically devoted to the engineering aspects of food processing. Co-Editors M. Elena Castell-Perez and Rosana Moreira, both of Texas A&M University, welcome papers covering the best original research on applications of engineering principles and concepts to food and food processes.