{"title":"论魏尔-斯塔克元素,I:构造和一般性质","authors":"David Burns, Daniel Macias Castillo, Soogil Seo","doi":"10.1112/jlms.70001","DOIUrl":null,"url":null,"abstract":"<p>We construct a canonical family of elements in the reduced exterior powers of unit groups of global fields and investigate their detailed arithmetic properties. We then show that these elements specialise to recover the classical theory of cyclotomic elements in real abelian fields and also have connections to the theory of non-commutative Euler systems for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Z</mi>\n <mi>p</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {Z}_p(1)$</annotation>\n </semantics></math> over general number fields.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70001","citationCount":"0","resultStr":"{\"title\":\"On Weil–Stark elements, I: Construction and general properties\",\"authors\":\"David Burns, Daniel Macias Castillo, Soogil Seo\",\"doi\":\"10.1112/jlms.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct a canonical family of elements in the reduced exterior powers of unit groups of global fields and investigate their detailed arithmetic properties. We then show that these elements specialise to recover the classical theory of cyclotomic elements in real abelian fields and also have connections to the theory of non-commutative Euler systems for <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Z</mi>\\n <mi>p</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathbb {Z}_p(1)$</annotation>\\n </semantics></math> over general number fields.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70001\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70001","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们在全域单位群的还原外部幂中构建了一个典型的元素族,并研究了它们的详细算术性质。然后,我们证明这些元素的特殊性恢复了实无性域中循环元素的经典理论,并与一般数域上 Z p ( 1 ) $\mathbb {Z}_p(1)$ 的非交换欧拉系统理论有关联。
On Weil–Stark elements, I: Construction and general properties
We construct a canonical family of elements in the reduced exterior powers of unit groups of global fields and investigate their detailed arithmetic properties. We then show that these elements specialise to recover the classical theory of cyclotomic elements in real abelian fields and also have connections to the theory of non-commutative Euler systems for over general number fields.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.