论魏尔-斯塔克元素,I:构造和一般性质

IF 1 2区 数学 Q1 MATHEMATICS
David Burns, Daniel Macias Castillo, Soogil Seo
{"title":"论魏尔-斯塔克元素,I:构造和一般性质","authors":"David Burns,&nbsp;Daniel Macias Castillo,&nbsp;Soogil Seo","doi":"10.1112/jlms.70001","DOIUrl":null,"url":null,"abstract":"<p>We construct a canonical family of elements in the reduced exterior powers of unit groups of global fields and investigate their detailed arithmetic properties. We then show that these elements specialise to recover the classical theory of cyclotomic elements in real abelian fields and also have connections to the theory of non-commutative Euler systems for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Z</mi>\n <mi>p</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {Z}_p(1)$</annotation>\n </semantics></math> over general number fields.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70001","citationCount":"0","resultStr":"{\"title\":\"On Weil–Stark elements, I: Construction and general properties\",\"authors\":\"David Burns,&nbsp;Daniel Macias Castillo,&nbsp;Soogil Seo\",\"doi\":\"10.1112/jlms.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct a canonical family of elements in the reduced exterior powers of unit groups of global fields and investigate their detailed arithmetic properties. We then show that these elements specialise to recover the classical theory of cyclotomic elements in real abelian fields and also have connections to the theory of non-commutative Euler systems for <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Z</mi>\\n <mi>p</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathbb {Z}_p(1)$</annotation>\\n </semantics></math> over general number fields.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70001\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70001","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们在全域单位群的还原外部幂中构建了一个典型的元素族,并研究了它们的详细算术性质。然后,我们证明这些元素的特殊性恢复了实无性域中循环元素的经典理论,并与一般数域上 Z p ( 1 ) $\mathbb {Z}_p(1)$ 的非交换欧拉系统理论有关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Weil–Stark elements, I: Construction and general properties

On Weil–Stark elements, I: Construction and general properties

We construct a canonical family of elements in the reduced exterior powers of unit groups of global fields and investigate their detailed arithmetic properties. We then show that these elements specialise to recover the classical theory of cyclotomic elements in real abelian fields and also have connections to the theory of non-commutative Euler systems for Z p ( 1 ) $\mathbb {Z}_p(1)$ over general number fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信