{"title":"赤道和北热带外火山喷入物之间不同的辐射和化学影响","authors":"Yifeng Peng, Wenshou Tian, Chenwei Li, Haiyang Xue, Pengfei Yu","doi":"10.1029/2024JD041690","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Stratospheric volcanic aerosols can affect the global radiative balance and stratospheric composition. In this study, we analyze ensemble experiments with an interactive stratospheric aerosol microphysical general circulation model, designed to assess the climate forcing from large-magnitude explosive eruptions in the tropics and northern extratropics. Previous studies have generally identified a lower radiative forcing from extratropical eruptions from the shorter stratospheric lifetime of volcanic sulfate aerosols. However, our study finds that both the shorter lifetime and lower effective radiative forcing (ERF) efficacy contribute to the lower ERF in the northern extratropical eruptions. The simulated 2-year averaged ERF efficacy in northern extratropical eruptions is 22% lower than that in the equatorial eruptions due to the seasonal mismatch of peak stratospheric aerosol optical depth and solar radiation in the first year after a northern extratropical volcanic eruption. Additionally, equatorial eruptions accelerate the Brewer-Dobson circulation (BDC), while northern hemispheric (NH) extratropical eruptions decelerate the BDC branch in NH and accelerate the BDC branch in southern hemisphere (SH), leading to different spatio-temporal pattern of ozone anomalies. Consequently, dominated by the dynamical processes, equatorial eruption leads to ozone loss in tropics and increase in midlatitudes, while both northern extratropical summer and winter eruptions trigger ozone decrease in NH and increase in SH.</p>\n </section>\n </div>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"129 20","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinct Radiative and Chemical Impacts Between the Equatorial and Northern Extratropical Volcanic Injections\",\"authors\":\"Yifeng Peng, Wenshou Tian, Chenwei Li, Haiyang Xue, Pengfei Yu\",\"doi\":\"10.1029/2024JD041690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Stratospheric volcanic aerosols can affect the global radiative balance and stratospheric composition. In this study, we analyze ensemble experiments with an interactive stratospheric aerosol microphysical general circulation model, designed to assess the climate forcing from large-magnitude explosive eruptions in the tropics and northern extratropics. Previous studies have generally identified a lower radiative forcing from extratropical eruptions from the shorter stratospheric lifetime of volcanic sulfate aerosols. However, our study finds that both the shorter lifetime and lower effective radiative forcing (ERF) efficacy contribute to the lower ERF in the northern extratropical eruptions. The simulated 2-year averaged ERF efficacy in northern extratropical eruptions is 22% lower than that in the equatorial eruptions due to the seasonal mismatch of peak stratospheric aerosol optical depth and solar radiation in the first year after a northern extratropical volcanic eruption. Additionally, equatorial eruptions accelerate the Brewer-Dobson circulation (BDC), while northern hemispheric (NH) extratropical eruptions decelerate the BDC branch in NH and accelerate the BDC branch in southern hemisphere (SH), leading to different spatio-temporal pattern of ozone anomalies. Consequently, dominated by the dynamical processes, equatorial eruption leads to ozone loss in tropics and increase in midlatitudes, while both northern extratropical summer and winter eruptions trigger ozone decrease in NH and increase in SH.</p>\\n </section>\\n </div>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":\"129 20\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041690\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041690","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Distinct Radiative and Chemical Impacts Between the Equatorial and Northern Extratropical Volcanic Injections
Stratospheric volcanic aerosols can affect the global radiative balance and stratospheric composition. In this study, we analyze ensemble experiments with an interactive stratospheric aerosol microphysical general circulation model, designed to assess the climate forcing from large-magnitude explosive eruptions in the tropics and northern extratropics. Previous studies have generally identified a lower radiative forcing from extratropical eruptions from the shorter stratospheric lifetime of volcanic sulfate aerosols. However, our study finds that both the shorter lifetime and lower effective radiative forcing (ERF) efficacy contribute to the lower ERF in the northern extratropical eruptions. The simulated 2-year averaged ERF efficacy in northern extratropical eruptions is 22% lower than that in the equatorial eruptions due to the seasonal mismatch of peak stratospheric aerosol optical depth and solar radiation in the first year after a northern extratropical volcanic eruption. Additionally, equatorial eruptions accelerate the Brewer-Dobson circulation (BDC), while northern hemispheric (NH) extratropical eruptions decelerate the BDC branch in NH and accelerate the BDC branch in southern hemisphere (SH), leading to different spatio-temporal pattern of ozone anomalies. Consequently, dominated by the dynamical processes, equatorial eruption leads to ozone loss in tropics and increase in midlatitudes, while both northern extratropical summer and winter eruptions trigger ozone decrease in NH and increase in SH.
期刊介绍:
JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.