室温下使用喷墨打印 G/PEDOT:PSS 复合材料的氨化学电阻传感器

IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Pratik Chhapia, Harshad Patel, Mahesh Vasava, Jasmin Kubavat, Jayrajsinh Sarvaiya
{"title":"室温下使用喷墨打印 G/PEDOT:PSS 复合材料的氨化学电阻传感器","authors":"Pratik Chhapia,&nbsp;Harshad Patel,&nbsp;Mahesh Vasava,&nbsp;Jasmin Kubavat,&nbsp;Jayrajsinh Sarvaiya","doi":"10.1007/s11051-024-06152-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study reveals the fabrication of a gas sensor with a PEDOT:PSS/graphene ink composite as an active layer on glossy paper. The glossy paper was chosen as the substrate material due to its low cost and easy availability. PEDOT:PSS/graphene ink was synthesized by simple mixing of PEDOT:PSS and graphene solution in the presence of distilled water, ethanol, glycerol, and diethylene glycol and was then sonicated and stirred at room temperature and characterized by FTIR, UV, XRD, AFM, and SEM. The sensitivity of the gas sensors towards acetonitrile, propanol, butanol, benzene, methanol, and ammonia analytes was investigated by measuring the change in resistance using a conventional multimeter at room temperature. The results exhibited that the composite’s response to ammonia change is stable and can measure concentration were the results also indicate that the sensors show promising responses with ± 1% reading error with a high response percentage.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"26 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemiresistive sensor for ammonia using inkjet printing of G/PEDOT:PSS composite at room temperature\",\"authors\":\"Pratik Chhapia,&nbsp;Harshad Patel,&nbsp;Mahesh Vasava,&nbsp;Jasmin Kubavat,&nbsp;Jayrajsinh Sarvaiya\",\"doi\":\"10.1007/s11051-024-06152-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study reveals the fabrication of a gas sensor with a PEDOT:PSS/graphene ink composite as an active layer on glossy paper. The glossy paper was chosen as the substrate material due to its low cost and easy availability. PEDOT:PSS/graphene ink was synthesized by simple mixing of PEDOT:PSS and graphene solution in the presence of distilled water, ethanol, glycerol, and diethylene glycol and was then sonicated and stirred at room temperature and characterized by FTIR, UV, XRD, AFM, and SEM. The sensitivity of the gas sensors towards acetonitrile, propanol, butanol, benzene, methanol, and ammonia analytes was investigated by measuring the change in resistance using a conventional multimeter at room temperature. The results exhibited that the composite’s response to ammonia change is stable and can measure concentration were the results also indicate that the sensors show promising responses with ± 1% reading error with a high response percentage.</p></div>\",\"PeriodicalId\":653,\"journal\":{\"name\":\"Journal of Nanoparticle Research\",\"volume\":\"26 10\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoparticle Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11051-024-06152-7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-024-06152-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究揭示了如何在光面纸上制作以 PEDOT:PSS/ 石墨烯油墨复合材料为活性层的气体传感器。之所以选择光面纸作为基底材料,是因为它成本低且易于获得。PEDOT:PSS/ 石墨烯油墨是在蒸馏水、乙醇、甘油和二甘醇存在下,通过简单混合 PEDOT:PSS 和石墨烯溶液合成的,然后在室温下超声和搅拌,并通过傅立叶变换红外光谱、紫外光谱、XRD、原子力显微镜和扫描电镜进行表征。通过在室温下使用传统万用表测量电阻变化,研究了气体传感器对乙腈、丙醇、丁醇、苯、甲醇和氨分析物的灵敏度。结果表明,该复合材料对氨气变化的反应稳定,可以测量浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chemiresistive sensor for ammonia using inkjet printing of G/PEDOT:PSS composite at room temperature

Chemiresistive sensor for ammonia using inkjet printing of G/PEDOT:PSS composite at room temperature

This study reveals the fabrication of a gas sensor with a PEDOT:PSS/graphene ink composite as an active layer on glossy paper. The glossy paper was chosen as the substrate material due to its low cost and easy availability. PEDOT:PSS/graphene ink was synthesized by simple mixing of PEDOT:PSS and graphene solution in the presence of distilled water, ethanol, glycerol, and diethylene glycol and was then sonicated and stirred at room temperature and characterized by FTIR, UV, XRD, AFM, and SEM. The sensitivity of the gas sensors towards acetonitrile, propanol, butanol, benzene, methanol, and ammonia analytes was investigated by measuring the change in resistance using a conventional multimeter at room temperature. The results exhibited that the composite’s response to ammonia change is stable and can measure concentration were the results also indicate that the sensors show promising responses with ± 1% reading error with a high response percentage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanoparticle Research
Journal of Nanoparticle Research 工程技术-材料科学:综合
CiteScore
4.40
自引率
4.00%
发文量
198
审稿时长
3.9 months
期刊介绍: The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size. Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology. The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信