{"title":"领导者/追随者系统单目视觉范围调节的并发学习方法","authors":"Luisa Fairfax, Patricio Vela","doi":"10.1007/s10514-024-10178-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores range and bearing angle regulation of a leader–follower using monocular vision. The main challenge is that monocular vision does not directly provide a range measurement. The contribution is a novel concurrent learning (CL) approach, called CL Subtended Angle and Bearing Estimator for Relative pose (CL-SABER), which achieves range regulation without communication, persistency of excitation or known geometry and is demonstrated on a physical, robot platform. A history stack estimates target size which augments the Kalman filter (KF) with a range pseudomeasurement. The target is followed <i>to scale without drift, persistency of excitation requirements, prior knowledge, or additional measurements</i>. <i>Finite</i> excitation is required to achieve parameter convergence and perform steady-state regulation using CL-SABER. Evaluation using simulation and mobile robot experiments in special Euclidean planar space (<i>SE</i>(2)) show that the new method provides stable and consistent range regulation, as demonstrated by the inter-rater reliability, including in noisy and high leader acceleration environments.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 8","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-024-10178-0.pdf","citationCount":"0","resultStr":"{\"title\":\"A concurrent learning approach to monocular vision range regulation of leader/follower systems\",\"authors\":\"Luisa Fairfax, Patricio Vela\",\"doi\":\"10.1007/s10514-024-10178-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper explores range and bearing angle regulation of a leader–follower using monocular vision. The main challenge is that monocular vision does not directly provide a range measurement. The contribution is a novel concurrent learning (CL) approach, called CL Subtended Angle and Bearing Estimator for Relative pose (CL-SABER), which achieves range regulation without communication, persistency of excitation or known geometry and is demonstrated on a physical, robot platform. A history stack estimates target size which augments the Kalman filter (KF) with a range pseudomeasurement. The target is followed <i>to scale without drift, persistency of excitation requirements, prior knowledge, or additional measurements</i>. <i>Finite</i> excitation is required to achieve parameter convergence and perform steady-state regulation using CL-SABER. Evaluation using simulation and mobile robot experiments in special Euclidean planar space (<i>SE</i>(2)) show that the new method provides stable and consistent range regulation, as demonstrated by the inter-rater reliability, including in noisy and high leader acceleration environments.</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":\"48 8\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10514-024-10178-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-024-10178-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-024-10178-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
本文探讨了利用单目视觉对领航员-追随者进行测距和方位角调节的问题。主要挑战在于单目视觉无法直接提供距离测量。本文的贡献在于采用了一种新颖的并发学习(CL)方法,称为 "CL-SABER"(CL Subtended Angle and Bearing Estimator for Relative pose)。历史堆栈可估算目标大小,并通过范围伪测量来增强卡尔曼滤波器(KF)。跟踪目标时,无需漂移、持续激励要求、先验知识或额外测量。利用 CL-SABER 实现参数收敛和稳态调节需要有限的激励。在特殊欧几里得平面空间(SE(2))中使用模拟和移动机器人实验进行的评估表明,新方法可提供稳定一致的测距调节,这一点已通过评分者之间的可靠性得到证明,包括在嘈杂和高领导加速度环境中。
A concurrent learning approach to monocular vision range regulation of leader/follower systems
This paper explores range and bearing angle regulation of a leader–follower using monocular vision. The main challenge is that monocular vision does not directly provide a range measurement. The contribution is a novel concurrent learning (CL) approach, called CL Subtended Angle and Bearing Estimator for Relative pose (CL-SABER), which achieves range regulation without communication, persistency of excitation or known geometry and is demonstrated on a physical, robot platform. A history stack estimates target size which augments the Kalman filter (KF) with a range pseudomeasurement. The target is followed to scale without drift, persistency of excitation requirements, prior knowledge, or additional measurements. Finite excitation is required to achieve parameter convergence and perform steady-state regulation using CL-SABER. Evaluation using simulation and mobile robot experiments in special Euclidean planar space (SE(2)) show that the new method provides stable and consistent range regulation, as demonstrated by the inter-rater reliability, including in noisy and high leader acceleration environments.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.