{"title":"通过改进的二进制调幅掩码实现高效相位检索","authors":"Chao Yang;Cheng Xu;Hui Pang;Jun Lan;Lixin Zhao;Song Hu;Wei Yan;Xianchang Zhu","doi":"10.1109/JPHOT.2024.3466565","DOIUrl":null,"url":null,"abstract":"Conventional iterative phase retrieval suffers from an inherent phase ambiguity due to limited measurement intensity. Multimodal amplitude modulation introduces physical constraints to tackle the underdetermination challenge. However, the time overhead caused by mask switching slows down the imaging speed. To increase imaging speed, we report an accelerated coded phase retrieval method by optimizing modulation masks. Compared to existing methods that require at least four patterns as inputs, the proposed method requires only three mask modulations to robustly reconstruct complex objects. The transparent pixels of the two masks partially overlap, constituting a strong constraint on the objective function. An additional random mask increases the difference between diffraction intensity patterns and ensures that the algorithm converges. The proposed method of efficient modulation using pure amplitude elements may open the door to short-wavelength high-speed complex amplitude imaging. Numerical simulations and proof-of-principle experiments have verified the feasibility of this method.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 6","pages":"1-8"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10689307","citationCount":"0","resultStr":"{\"title\":\"Efficient Phase Retrieval via Improved Binary Amplitude Modulation Masks\",\"authors\":\"Chao Yang;Cheng Xu;Hui Pang;Jun Lan;Lixin Zhao;Song Hu;Wei Yan;Xianchang Zhu\",\"doi\":\"10.1109/JPHOT.2024.3466565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional iterative phase retrieval suffers from an inherent phase ambiguity due to limited measurement intensity. Multimodal amplitude modulation introduces physical constraints to tackle the underdetermination challenge. However, the time overhead caused by mask switching slows down the imaging speed. To increase imaging speed, we report an accelerated coded phase retrieval method by optimizing modulation masks. Compared to existing methods that require at least four patterns as inputs, the proposed method requires only three mask modulations to robustly reconstruct complex objects. The transparent pixels of the two masks partially overlap, constituting a strong constraint on the objective function. An additional random mask increases the difference between diffraction intensity patterns and ensures that the algorithm converges. The proposed method of efficient modulation using pure amplitude elements may open the door to short-wavelength high-speed complex amplitude imaging. Numerical simulations and proof-of-principle experiments have verified the feasibility of this method.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"16 6\",\"pages\":\"1-8\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10689307\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10689307/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10689307/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Efficient Phase Retrieval via Improved Binary Amplitude Modulation Masks
Conventional iterative phase retrieval suffers from an inherent phase ambiguity due to limited measurement intensity. Multimodal amplitude modulation introduces physical constraints to tackle the underdetermination challenge. However, the time overhead caused by mask switching slows down the imaging speed. To increase imaging speed, we report an accelerated coded phase retrieval method by optimizing modulation masks. Compared to existing methods that require at least four patterns as inputs, the proposed method requires only three mask modulations to robustly reconstruct complex objects. The transparent pixels of the two masks partially overlap, constituting a strong constraint on the objective function. An additional random mask increases the difference between diffraction intensity patterns and ensures that the algorithm converges. The proposed method of efficient modulation using pure amplitude elements may open the door to short-wavelength high-speed complex amplitude imaging. Numerical simulations and proof-of-principle experiments have verified the feasibility of this method.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.