{"title":"CoCo:基于 CBOW 的下一代通信部分和不连续日志协同漏洞检测框架","authors":"Yifeng Peng;Xinyi Li;Sudhanshu Arya;Ying Wang","doi":"10.1109/OJCOMS.2024.3471709","DOIUrl":null,"url":null,"abstract":"With the development of communication technology, protocol design, and infrastructure implementation have become more complex, bringing significant security challenges to 5G and NextG systems. Fuzz testing is widely used to detect system vulnerabilities and the health status under the condition of abnormal input. In this paper, we generate fuzz testing via the Man In The Middle Model (MITM) at various locations of the time sequence in the 5G authentication and authorization process and analyze the communication state transitions, which are recorded in the log files of fuzz testing cases. CoCo introduces a novel CBOW-based framework for synergistic vulnerability detection, addressing the challenge of partial log data and scalability in real-time environments, a significant advancement in the field of NextG communication security. CoCo can be applied to identifying the type of attacks or abnormal inputs from partial system profiling for the impacted behaviors. In particular, we show, for the first time, that by utilizing the CoCo, we can precisely detect the fuzzed layer using only a partial segment of the log file in real-time and identify the root cause of vulnerabilities with high accuracy. The results show that when we get only 40% portion of the entire log file, applying convolutional neural network (CNN) in the machine learning models can reach the Area under Curve (AUC) value of 92%. Furthermore, by strategically combining these segments, we enhanced the efficacy of vulnerability detection, demonstrating a synergistic effect where the combined impact is greater than the sum of individual parts, meanwhile reducing the time complexity by 6%.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"6381-6403"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10701039","citationCount":"0","resultStr":"{\"title\":\"CoCo: A CBOW-Based Framework for Synergistic Vulnerability Detection in Partial and Discontinuous Logs for NextG Communications\",\"authors\":\"Yifeng Peng;Xinyi Li;Sudhanshu Arya;Ying Wang\",\"doi\":\"10.1109/OJCOMS.2024.3471709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of communication technology, protocol design, and infrastructure implementation have become more complex, bringing significant security challenges to 5G and NextG systems. Fuzz testing is widely used to detect system vulnerabilities and the health status under the condition of abnormal input. In this paper, we generate fuzz testing via the Man In The Middle Model (MITM) at various locations of the time sequence in the 5G authentication and authorization process and analyze the communication state transitions, which are recorded in the log files of fuzz testing cases. CoCo introduces a novel CBOW-based framework for synergistic vulnerability detection, addressing the challenge of partial log data and scalability in real-time environments, a significant advancement in the field of NextG communication security. CoCo can be applied to identifying the type of attacks or abnormal inputs from partial system profiling for the impacted behaviors. In particular, we show, for the first time, that by utilizing the CoCo, we can precisely detect the fuzzed layer using only a partial segment of the log file in real-time and identify the root cause of vulnerabilities with high accuracy. The results show that when we get only 40% portion of the entire log file, applying convolutional neural network (CNN) in the machine learning models can reach the Area under Curve (AUC) value of 92%. Furthermore, by strategically combining these segments, we enhanced the efficacy of vulnerability detection, demonstrating a synergistic effect where the combined impact is greater than the sum of individual parts, meanwhile reducing the time complexity by 6%.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":\"5 \",\"pages\":\"6381-6403\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10701039\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10701039/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10701039/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
CoCo: A CBOW-Based Framework for Synergistic Vulnerability Detection in Partial and Discontinuous Logs for NextG Communications
With the development of communication technology, protocol design, and infrastructure implementation have become more complex, bringing significant security challenges to 5G and NextG systems. Fuzz testing is widely used to detect system vulnerabilities and the health status under the condition of abnormal input. In this paper, we generate fuzz testing via the Man In The Middle Model (MITM) at various locations of the time sequence in the 5G authentication and authorization process and analyze the communication state transitions, which are recorded in the log files of fuzz testing cases. CoCo introduces a novel CBOW-based framework for synergistic vulnerability detection, addressing the challenge of partial log data and scalability in real-time environments, a significant advancement in the field of NextG communication security. CoCo can be applied to identifying the type of attacks or abnormal inputs from partial system profiling for the impacted behaviors. In particular, we show, for the first time, that by utilizing the CoCo, we can precisely detect the fuzzed layer using only a partial segment of the log file in real-time and identify the root cause of vulnerabilities with high accuracy. The results show that when we get only 40% portion of the entire log file, applying convolutional neural network (CNN) in the machine learning models can reach the Area under Curve (AUC) value of 92%. Furthermore, by strategically combining these segments, we enhanced the efficacy of vulnerability detection, demonstrating a synergistic effect where the combined impact is greater than the sum of individual parts, meanwhile reducing the time complexity by 6%.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.