Salvatore D'Arco;Santiago Sanchez-Acevedo;Jon Are Suul
{"title":"大规模电力系统应用中的电力转换器和智能电子设备的多硬件在环实验室测试","authors":"Salvatore D'Arco;Santiago Sanchez-Acevedo;Jon Are Suul","doi":"10.1109/OJPEL.2024.3460709","DOIUrl":null,"url":null,"abstract":"This paper presents an approach and a corresponding laboratory infrastructure for multi-hardware-in-the-loop (M-HiL) testing of power converters and intelligent electronic devices (IEDs) with wide area features for power system monitoring and control. The basis for the testing environment is a digital real-time simulation (RTS) platform which can be utilized for phasor-based or hybrid phasor and electromagnetic transient (EMT) power system simulation. A high-bandwidth power amplifier is used for interfacing the real-time simulated power system to the power hardware. The necessary elements and their interfaces required for realizing the M-HiL testing are highlighted in the paper. Finally, a complete example of an M-HiL test based on real-time simulation of the Nordic 44 (N44)-bus power system model is presented. The test setup includes two phasor measurement units (PMUs) with their corresponding communication layers and a converter configuration for scaled emulation of the HVDC transmission system of an offshore wind farm. The configuration also includes a grid forming converter unit operated in parallel to the grid-side HVDC terminal. The presented test demonstrates how a grid forming converter operated as a Virtual Synchronous Machine (VSM) can provide frequency support to the Nordic power system and how this support would be recorded by the PMUs.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"5 ","pages":"1520-1533"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10680574","citationCount":"0","resultStr":"{\"title\":\"Multi-Hardware-in-the-Loop Laboratory Testing of Power Converters and Intelligent Electronic Devices for Large-Scale Power System Applications\",\"authors\":\"Salvatore D'Arco;Santiago Sanchez-Acevedo;Jon Are Suul\",\"doi\":\"10.1109/OJPEL.2024.3460709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach and a corresponding laboratory infrastructure for multi-hardware-in-the-loop (M-HiL) testing of power converters and intelligent electronic devices (IEDs) with wide area features for power system monitoring and control. The basis for the testing environment is a digital real-time simulation (RTS) platform which can be utilized for phasor-based or hybrid phasor and electromagnetic transient (EMT) power system simulation. A high-bandwidth power amplifier is used for interfacing the real-time simulated power system to the power hardware. The necessary elements and their interfaces required for realizing the M-HiL testing are highlighted in the paper. Finally, a complete example of an M-HiL test based on real-time simulation of the Nordic 44 (N44)-bus power system model is presented. The test setup includes two phasor measurement units (PMUs) with their corresponding communication layers and a converter configuration for scaled emulation of the HVDC transmission system of an offshore wind farm. The configuration also includes a grid forming converter unit operated in parallel to the grid-side HVDC terminal. The presented test demonstrates how a grid forming converter operated as a Virtual Synchronous Machine (VSM) can provide frequency support to the Nordic power system and how this support would be recorded by the PMUs.\",\"PeriodicalId\":93182,\"journal\":{\"name\":\"IEEE open journal of power electronics\",\"volume\":\"5 \",\"pages\":\"1520-1533\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10680574\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of power electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10680574/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10680574/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Multi-Hardware-in-the-Loop Laboratory Testing of Power Converters and Intelligent Electronic Devices for Large-Scale Power System Applications
This paper presents an approach and a corresponding laboratory infrastructure for multi-hardware-in-the-loop (M-HiL) testing of power converters and intelligent electronic devices (IEDs) with wide area features for power system monitoring and control. The basis for the testing environment is a digital real-time simulation (RTS) platform which can be utilized for phasor-based or hybrid phasor and electromagnetic transient (EMT) power system simulation. A high-bandwidth power amplifier is used for interfacing the real-time simulated power system to the power hardware. The necessary elements and their interfaces required for realizing the M-HiL testing are highlighted in the paper. Finally, a complete example of an M-HiL test based on real-time simulation of the Nordic 44 (N44)-bus power system model is presented. The test setup includes two phasor measurement units (PMUs) with their corresponding communication layers and a converter configuration for scaled emulation of the HVDC transmission system of an offshore wind farm. The configuration also includes a grid forming converter unit operated in parallel to the grid-side HVDC terminal. The presented test demonstrates how a grid forming converter operated as a Virtual Synchronous Machine (VSM) can provide frequency support to the Nordic power system and how this support would be recorded by the PMUs.