基于 Nbeats 网络的高效振动触觉编解码器

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yiwen Xu;Dongfang Chen;Ying Fang;Yang Lu;Tiesong Zhao
{"title":"基于 Nbeats 网络的高效振动触觉编解码器","authors":"Yiwen Xu;Dongfang Chen;Ying Fang;Yang Lu;Tiesong Zhao","doi":"10.1109/LSP.2024.3477251","DOIUrl":null,"url":null,"abstract":"Within the domain of multimodal communication, the compression of audio, image, and video information is well-established, but compressing haptic signals, including vibrotactile signals, remains challenging. Particularly with the enhancement of haptic signal sampling rate and degrees of freedom, there is a substantial increase in data volume. While existing algorithms have made progress in vibrotactile codecs, there remains significant room for improvement in compression ratios. We propose an innovative Nbeats Network-based Vibrotactile Codec (NNVC) that leverages the statistical characteristics of vibrotactile data. This advanced codec integrates the Nbeats network for precise vibrotactile prediction, residual quantization, efficient Run-Length Encoding, and Huffman coding. The algorithm not only captures the intricate details of vibrotactile signals but also ensures high-efficiency data compression. It exhibits robust overall performance in terms of Signal-to-Noise Ratio (SNR) and Peak Signal-to-Noise Ratio (PSNR), significantly surpassing the state-of-the-art.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"31 ","pages":"2845-2849"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Vibrotactile Codec Based on Nbeats Network\",\"authors\":\"Yiwen Xu;Dongfang Chen;Ying Fang;Yang Lu;Tiesong Zhao\",\"doi\":\"10.1109/LSP.2024.3477251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within the domain of multimodal communication, the compression of audio, image, and video information is well-established, but compressing haptic signals, including vibrotactile signals, remains challenging. Particularly with the enhancement of haptic signal sampling rate and degrees of freedom, there is a substantial increase in data volume. While existing algorithms have made progress in vibrotactile codecs, there remains significant room for improvement in compression ratios. We propose an innovative Nbeats Network-based Vibrotactile Codec (NNVC) that leverages the statistical characteristics of vibrotactile data. This advanced codec integrates the Nbeats network for precise vibrotactile prediction, residual quantization, efficient Run-Length Encoding, and Huffman coding. The algorithm not only captures the intricate details of vibrotactile signals but also ensures high-efficiency data compression. It exhibits robust overall performance in terms of Signal-to-Noise Ratio (SNR) and Peak Signal-to-Noise Ratio (PSNR), significantly surpassing the state-of-the-art.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"31 \",\"pages\":\"2845-2849\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10711265/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10711265/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在多模态通信领域,音频、图像和视频信息的压缩技术已经非常成熟,但包括振动触觉信号在内的触觉信号的压缩技术仍然具有挑战性。特别是随着触觉信号采样率和自由度的提高,数据量大幅增加。虽然现有算法在振动编解码方面取得了进展,但在压缩率方面仍有很大的改进空间。我们提出了一种创新的基于 Nbeats 网络的振动编解码器(NNVC),它充分利用了振动数据的统计特性。这种先进的编解码器集成了 Nbeats 网络,用于精确的振动预测、残差量化、高效的运行长度编码和哈夫曼编码。该算法不仅能捕捉振动信号的复杂细节,还能确保高效的数据压缩。该算法在信噪比(SNR)和峰值信噪比(PSNR)方面表现出强劲的整体性能,大大超过了最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Vibrotactile Codec Based on Nbeats Network
Within the domain of multimodal communication, the compression of audio, image, and video information is well-established, but compressing haptic signals, including vibrotactile signals, remains challenging. Particularly with the enhancement of haptic signal sampling rate and degrees of freedom, there is a substantial increase in data volume. While existing algorithms have made progress in vibrotactile codecs, there remains significant room for improvement in compression ratios. We propose an innovative Nbeats Network-based Vibrotactile Codec (NNVC) that leverages the statistical characteristics of vibrotactile data. This advanced codec integrates the Nbeats network for precise vibrotactile prediction, residual quantization, efficient Run-Length Encoding, and Huffman coding. The algorithm not only captures the intricate details of vibrotactile signals but also ensures high-efficiency data compression. It exhibits robust overall performance in terms of Signal-to-Noise Ratio (SNR) and Peak Signal-to-Noise Ratio (PSNR), significantly surpassing the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信