{"title":"基于 Nbeats 网络的高效振动触觉编解码器","authors":"Yiwen Xu;Dongfang Chen;Ying Fang;Yang Lu;Tiesong Zhao","doi":"10.1109/LSP.2024.3477251","DOIUrl":null,"url":null,"abstract":"Within the domain of multimodal communication, the compression of audio, image, and video information is well-established, but compressing haptic signals, including vibrotactile signals, remains challenging. Particularly with the enhancement of haptic signal sampling rate and degrees of freedom, there is a substantial increase in data volume. While existing algorithms have made progress in vibrotactile codecs, there remains significant room for improvement in compression ratios. We propose an innovative Nbeats Network-based Vibrotactile Codec (NNVC) that leverages the statistical characteristics of vibrotactile data. This advanced codec integrates the Nbeats network for precise vibrotactile prediction, residual quantization, efficient Run-Length Encoding, and Huffman coding. The algorithm not only captures the intricate details of vibrotactile signals but also ensures high-efficiency data compression. It exhibits robust overall performance in terms of Signal-to-Noise Ratio (SNR) and Peak Signal-to-Noise Ratio (PSNR), significantly surpassing the state-of-the-art.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Vibrotactile Codec Based on Nbeats Network\",\"authors\":\"Yiwen Xu;Dongfang Chen;Ying Fang;Yang Lu;Tiesong Zhao\",\"doi\":\"10.1109/LSP.2024.3477251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within the domain of multimodal communication, the compression of audio, image, and video information is well-established, but compressing haptic signals, including vibrotactile signals, remains challenging. Particularly with the enhancement of haptic signal sampling rate and degrees of freedom, there is a substantial increase in data volume. While existing algorithms have made progress in vibrotactile codecs, there remains significant room for improvement in compression ratios. We propose an innovative Nbeats Network-based Vibrotactile Codec (NNVC) that leverages the statistical characteristics of vibrotactile data. This advanced codec integrates the Nbeats network for precise vibrotactile prediction, residual quantization, efficient Run-Length Encoding, and Huffman coding. The algorithm not only captures the intricate details of vibrotactile signals but also ensures high-efficiency data compression. It exhibits robust overall performance in terms of Signal-to-Noise Ratio (SNR) and Peak Signal-to-Noise Ratio (PSNR), significantly surpassing the state-of-the-art.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10711265/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10711265/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Efficient Vibrotactile Codec Based on Nbeats Network
Within the domain of multimodal communication, the compression of audio, image, and video information is well-established, but compressing haptic signals, including vibrotactile signals, remains challenging. Particularly with the enhancement of haptic signal sampling rate and degrees of freedom, there is a substantial increase in data volume. While existing algorithms have made progress in vibrotactile codecs, there remains significant room for improvement in compression ratios. We propose an innovative Nbeats Network-based Vibrotactile Codec (NNVC) that leverages the statistical characteristics of vibrotactile data. This advanced codec integrates the Nbeats network for precise vibrotactile prediction, residual quantization, efficient Run-Length Encoding, and Huffman coding. The algorithm not only captures the intricate details of vibrotactile signals but also ensures high-efficiency data compression. It exhibits robust overall performance in terms of Signal-to-Noise Ratio (SNR) and Peak Signal-to-Noise Ratio (PSNR), significantly surpassing the state-of-the-art.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.