高熵设计 Ruddlesden-Popper 结构 LNO 以提高质子固体氧化物燃料电池的性能

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2024-10-17 DOI:10.1016/j.fuel.2024.133430
{"title":"高熵设计 Ruddlesden-Popper 结构 LNO 以提高质子固体氧化物燃料电池的性能","authors":"","doi":"10.1016/j.fuel.2024.133430","DOIUrl":null,"url":null,"abstract":"<div><div>Protionic Ceramic Fuel Cells (PCFCs) are devices that efficiently convert chemical energy to electrical energy at low temperatures. Significant research efforts have been directed towards the development of cathodes with enhanced catalytic activity. In this work, a high-entropy approach was employed at the A site of La<sub>2</sub>NiO<sub>4+δ</sub> (LNO) with a Ruddlesden-Popper (R-P) structure, resulting in the synthesis of the LaPr<sub>0.2</sub>Sm<sub>0.2</sub>Ba<sub>0.2</sub>Sr<sub>0.2</sub>Ca<sub>0.2</sub>NiO<sub>4+δ</sub> (HE-LPSBSCN) cathode. A comprehensive series of tests demonstrated that this high-entropy strategy improved the oxygen reduction reaction (ORR) activity, hydration behavior, well operational stability, and electronic conductivity of LNO. The HE-LPSBSCN cathode demonstrated record-breaking performance, achieving a maximum power density of 2004 mW cm<sup>−2</sup> at 700 °C. This finding provides novel insights for the rational design and optimization of highly catalytically active cathodes for PCFCs.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-entropy design of Ruddlesden-Popper structured LNO for enhanced performance in proton solid oxide fuel cells\",\"authors\":\"\",\"doi\":\"10.1016/j.fuel.2024.133430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Protionic Ceramic Fuel Cells (PCFCs) are devices that efficiently convert chemical energy to electrical energy at low temperatures. Significant research efforts have been directed towards the development of cathodes with enhanced catalytic activity. In this work, a high-entropy approach was employed at the A site of La<sub>2</sub>NiO<sub>4+δ</sub> (LNO) with a Ruddlesden-Popper (R-P) structure, resulting in the synthesis of the LaPr<sub>0.2</sub>Sm<sub>0.2</sub>Ba<sub>0.2</sub>Sr<sub>0.2</sub>Ca<sub>0.2</sub>NiO<sub>4+δ</sub> (HE-LPSBSCN) cathode. A comprehensive series of tests demonstrated that this high-entropy strategy improved the oxygen reduction reaction (ORR) activity, hydration behavior, well operational stability, and electronic conductivity of LNO. The HE-LPSBSCN cathode demonstrated record-breaking performance, achieving a maximum power density of 2004 mW cm<sup>−2</sup> at 700 °C. This finding provides novel insights for the rational design and optimization of highly catalytically active cathodes for PCFCs.</div></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016236124025791\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124025791","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

原生陶瓷燃料电池(PCFC)是一种能在低温条件下将化学能有效转化为电能的装置。人们一直致力于开发催化活性更强的阴极。在这项工作中,在具有 R-P 结构的 La2NiO4+δ (LNO) 的 A 位采用了高熵方法,从而合成了 LaPr0.2Sm0.2Ba0.2Sr0.2Ca0.2NiO4+δ (HE-LPSBSCN) 阴极。一系列综合测试表明,这种高熵策略提高了 LNO 的氧还原反应(ORR)活性、水合行为、良好的运行稳定性和电子导电性。HE-LPSBSCN 阴极的性能打破了记录,在 700 °C 时达到了 2004 mW cm-2 的最大功率密度。这一发现为合理设计和优化 PCFC 的高催化活性阴极提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-entropy design of Ruddlesden-Popper structured LNO for enhanced performance in proton solid oxide fuel cells
Protionic Ceramic Fuel Cells (PCFCs) are devices that efficiently convert chemical energy to electrical energy at low temperatures. Significant research efforts have been directed towards the development of cathodes with enhanced catalytic activity. In this work, a high-entropy approach was employed at the A site of La2NiO4+δ (LNO) with a Ruddlesden-Popper (R-P) structure, resulting in the synthesis of the LaPr0.2Sm0.2Ba0.2Sr0.2Ca0.2NiO4+δ (HE-LPSBSCN) cathode. A comprehensive series of tests demonstrated that this high-entropy strategy improved the oxygen reduction reaction (ORR) activity, hydration behavior, well operational stability, and electronic conductivity of LNO. The HE-LPSBSCN cathode demonstrated record-breaking performance, achieving a maximum power density of 2004 mW cm−2 at 700 °C. This finding provides novel insights for the rational design and optimization of highly catalytically active cathodes for PCFCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信