基于 DDQN 的在线计算卸载和应用缓存,用于动态边缘计算服务管理

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shudong Wang, Zhi Lu, Haiyuan Gui, Xiao He, Shengzhe Zhao, Zixuan Fan, Yanxiang Zhang, Shanchen Pang
{"title":"基于 DDQN 的在线计算卸载和应用缓存,用于动态边缘计算服务管理","authors":"Shudong Wang,&nbsp;Zhi Lu,&nbsp;Haiyuan Gui,&nbsp;Xiao He,&nbsp;Shengzhe Zhao,&nbsp;Zixuan Fan,&nbsp;Yanxiang Zhang,&nbsp;Shanchen Pang","doi":"10.1016/j.adhoc.2024.103681","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-access Edge Computing (MEC) reduces task service latency and energy consumption by offloading computing tasks to MEC servers. However, constrained by the limited bandwidth and computing resources, MEC servers often cannot parallelly process all computing tasks. Simultaneously, the high dynamism of service popularity necessitates MEC servers to dynamically update cached applications, under ensuring compliance with storage resource constraints and the system cache updating cost budget for service providers. In response to the above two issues, this paper firstly formulates computation offloading and application caching as a dual-timescale decision optimization problem, aiming to minimize the average service latency for users by obtaining optimal offloading decision, cache decision, transmission bandwidth, and computing resource. Then, we propose a Deep Reinforcement Learning (DRL)-based two-stage online computation offloading and application caching (DTSO2C) algorithm, effectively stabilizing application cache update costs and enhancing Quality of Service (QoS) for users. Furthermore, we utilize convex optimization algorithms to derive the optimal communication bandwidth and computing resource allocation strategy, further reducing the average service latency for users. Simulation results demonstrate that the DTSO2C algorithm outperforms the compared algorithms, achieving an average reduction in service latency of 66.2%, with an average cache update cost of only 0.15 USD per time frame.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DDQN-based online computation offloading and application caching for dynamic edge computing service management\",\"authors\":\"Shudong Wang,&nbsp;Zhi Lu,&nbsp;Haiyuan Gui,&nbsp;Xiao He,&nbsp;Shengzhe Zhao,&nbsp;Zixuan Fan,&nbsp;Yanxiang Zhang,&nbsp;Shanchen Pang\",\"doi\":\"10.1016/j.adhoc.2024.103681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multi-access Edge Computing (MEC) reduces task service latency and energy consumption by offloading computing tasks to MEC servers. However, constrained by the limited bandwidth and computing resources, MEC servers often cannot parallelly process all computing tasks. Simultaneously, the high dynamism of service popularity necessitates MEC servers to dynamically update cached applications, under ensuring compliance with storage resource constraints and the system cache updating cost budget for service providers. In response to the above two issues, this paper firstly formulates computation offloading and application caching as a dual-timescale decision optimization problem, aiming to minimize the average service latency for users by obtaining optimal offloading decision, cache decision, transmission bandwidth, and computing resource. Then, we propose a Deep Reinforcement Learning (DRL)-based two-stage online computation offloading and application caching (DTSO2C) algorithm, effectively stabilizing application cache update costs and enhancing Quality of Service (QoS) for users. Furthermore, we utilize convex optimization algorithms to derive the optimal communication bandwidth and computing resource allocation strategy, further reducing the average service latency for users. Simulation results demonstrate that the DTSO2C algorithm outperforms the compared algorithms, achieving an average reduction in service latency of 66.2%, with an average cache update cost of only 0.15 USD per time frame.</div></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570870524002920\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002920","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

多访问边缘计算(MEC)通过将计算任务卸载到 MEC 服务器来减少任务服务延迟和能源消耗。然而,受限于有限的带宽和计算资源,MEC 服务器往往无法并行处理所有计算任务。同时,由于服务流行的高动态性,MEC 服务器必须在确保符合存储资源限制和服务提供商的系统缓存更新成本预算的前提下,动态更新缓存应用程序。针对上述两个问题,本文首先将计算卸载和应用缓存表述为一个双时间尺度的决策优化问题,旨在通过获得最优的卸载决策、缓存决策、传输带宽和计算资源来最小化用户的平均服务延迟。然后,我们提出了基于深度强化学习(DRL)的两阶段在线计算卸载和应用缓存(DTSO2C)算法,有效地稳定了应用缓存更新成本,提高了用户的服务质量(QoS)。此外,我们还利用凸优化算法得出了最佳通信带宽和计算资源分配策略,进一步降低了用户的平均服务延迟。仿真结果表明,DTSO2C 算法优于其他算法,平均减少了 66.2% 的服务延迟,每个时间段的平均缓存更新成本仅为 0.15 美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DDQN-based online computation offloading and application caching for dynamic edge computing service management
Multi-access Edge Computing (MEC) reduces task service latency and energy consumption by offloading computing tasks to MEC servers. However, constrained by the limited bandwidth and computing resources, MEC servers often cannot parallelly process all computing tasks. Simultaneously, the high dynamism of service popularity necessitates MEC servers to dynamically update cached applications, under ensuring compliance with storage resource constraints and the system cache updating cost budget for service providers. In response to the above two issues, this paper firstly formulates computation offloading and application caching as a dual-timescale decision optimization problem, aiming to minimize the average service latency for users by obtaining optimal offloading decision, cache decision, transmission bandwidth, and computing resource. Then, we propose a Deep Reinforcement Learning (DRL)-based two-stage online computation offloading and application caching (DTSO2C) algorithm, effectively stabilizing application cache update costs and enhancing Quality of Service (QoS) for users. Furthermore, we utilize convex optimization algorithms to derive the optimal communication bandwidth and computing resource allocation strategy, further reducing the average service latency for users. Simulation results demonstrate that the DTSO2C algorithm outperforms the compared algorithms, achieving an average reduction in service latency of 66.2%, with an average cache update cost of only 0.15 USD per time frame.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ad Hoc Networks
Ad Hoc Networks 工程技术-电信学
CiteScore
10.20
自引率
4.20%
发文量
131
审稿时长
4.8 months
期刊介绍: The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to: Mobile and Wireless Ad Hoc Networks Sensor Networks Wireless Local and Personal Area Networks Home Networks Ad Hoc Networks of Autonomous Intelligent Systems Novel Architectures for Ad Hoc and Sensor Networks Self-organizing Network Architectures and Protocols Transport Layer Protocols Routing protocols (unicast, multicast, geocast, etc.) Media Access Control Techniques Error Control Schemes Power-Aware, Low-Power and Energy-Efficient Designs Synchronization and Scheduling Issues Mobility Management Mobility-Tolerant Communication Protocols Location Tracking and Location-based Services Resource and Information Management Security and Fault-Tolerance Issues Hardware and Software Platforms, Systems, and Testbeds Experimental and Prototype Results Quality-of-Service Issues Cross-Layer Interactions Scalability Issues Performance Analysis and Simulation of Protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信