用于检测生理 pH 值液体中尿酸的新型钴基气凝胶

IF 10.7 1区 生物学 Q1 BIOPHYSICS
{"title":"用于检测生理 pH 值液体中尿酸的新型钴基气凝胶","authors":"","doi":"10.1016/j.bios.2024.116850","DOIUrl":null,"url":null,"abstract":"<div><div>A sensor for uric acid (UA) based on the urate oxidase enzyme (UOx) immobilized in novel Co-based aerogels with transition metals synthesized by the sol-gel method was developed and evaluated. The Co-based aerogels: Co, Ni-Co and Pd-Co were physicochemically characterized by XRD and HR-TEM. The surface area values of 53, 57 and 66 m<sup>2</sup> g-1 were determined for Co, Ni-Co and Pd-Co, respectively by N<sub>2</sub> adsorption-desorption technique. Co-based aerogels were mixed by cross-linking with UOx enzymes and electrochemically characterized in buffers at pH 7.4 and 5.6 (pH values reported for biological fluids such as blood and sweat) in the presence of different uric acid concentrations. Co-based aerogels with UOx showed improved performance as a uric acid biosensor compared to using the enzyme alone. At a pH of 7.4, a higher sensitivity of 11 μA μM<sup>−1</sup> was obtained with Pd-Co/UOx, 1.6 times higher than with UOx. At a pH value of 5.6, the highest sensitivity is achieved with Ni-Co/UOx. Stability and selectivity tests were performed in the presence of biological interferents without significant changes in the sensor. These results indicate a pleasing synergistic activity between Co-based aerogels and the enzyme.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel cobalt-based aerogels for uric acid detection in fluids at physiological pH\",\"authors\":\"\",\"doi\":\"10.1016/j.bios.2024.116850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A sensor for uric acid (UA) based on the urate oxidase enzyme (UOx) immobilized in novel Co-based aerogels with transition metals synthesized by the sol-gel method was developed and evaluated. The Co-based aerogels: Co, Ni-Co and Pd-Co were physicochemically characterized by XRD and HR-TEM. The surface area values of 53, 57 and 66 m<sup>2</sup> g-1 were determined for Co, Ni-Co and Pd-Co, respectively by N<sub>2</sub> adsorption-desorption technique. Co-based aerogels were mixed by cross-linking with UOx enzymes and electrochemically characterized in buffers at pH 7.4 and 5.6 (pH values reported for biological fluids such as blood and sweat) in the presence of different uric acid concentrations. Co-based aerogels with UOx showed improved performance as a uric acid biosensor compared to using the enzyme alone. At a pH of 7.4, a higher sensitivity of 11 μA μM<sup>−1</sup> was obtained with Pd-Co/UOx, 1.6 times higher than with UOx. At a pH value of 5.6, the highest sensitivity is achieved with Ni-Co/UOx. Stability and selectivity tests were performed in the presence of biological interferents without significant changes in the sensor. These results indicate a pleasing synergistic activity between Co-based aerogels and the enzyme.</div></div>\",\"PeriodicalId\":259,\"journal\":{\"name\":\"Biosensors and Bioelectronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956566324008571\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566324008571","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发并评估了一种基于固定在新型 Co 基气凝胶中的尿酸氧化酶(UOx)的尿酸(UA)传感器,这种气凝胶是用溶胶-凝胶法合成的,其中含有过渡金属。钴基气凝胶:通过 XRD 和 HR-TEM 对 Co、Ni-Co 和 Pd-Co 气凝胶进行了物理化学表征。通过 N2 吸附-解吸技术测定了 Co、Ni-Co 和 Pd-Co 的表面积值分别为 53、57 和 66 m2 g-1。钴基气凝胶与氧化亚铜酶交联混合后,在 pH 值为 7.4 和 5.6(据报道血液和汗液等生物液体的 pH 值)的缓冲液中,在不同浓度的尿酸存在下进行电化学表征。与单独使用酶相比,含有氧化亚铜的钴基气凝胶作为尿酸生物传感器的性能有所提高。在 pH 值为 7.4 时,Pd-Co/UOx 的灵敏度为 11 μA μM-1,是 UOx 的 1.6 倍。在 pH 值为 5.6 时,Ni-Co/UOx 的灵敏度最高。在有生物干扰的情况下进行了稳定性和选择性测试,传感器没有发生明显变化。这些结果表明,钴基气凝胶与酶之间具有良好的协同活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel cobalt-based aerogels for uric acid detection in fluids at physiological pH
A sensor for uric acid (UA) based on the urate oxidase enzyme (UOx) immobilized in novel Co-based aerogels with transition metals synthesized by the sol-gel method was developed and evaluated. The Co-based aerogels: Co, Ni-Co and Pd-Co were physicochemically characterized by XRD and HR-TEM. The surface area values of 53, 57 and 66 m2 g-1 were determined for Co, Ni-Co and Pd-Co, respectively by N2 adsorption-desorption technique. Co-based aerogels were mixed by cross-linking with UOx enzymes and electrochemically characterized in buffers at pH 7.4 and 5.6 (pH values reported for biological fluids such as blood and sweat) in the presence of different uric acid concentrations. Co-based aerogels with UOx showed improved performance as a uric acid biosensor compared to using the enzyme alone. At a pH of 7.4, a higher sensitivity of 11 μA μM−1 was obtained with Pd-Co/UOx, 1.6 times higher than with UOx. At a pH value of 5.6, the highest sensitivity is achieved with Ni-Co/UOx. Stability and selectivity tests were performed in the presence of biological interferents without significant changes in the sensor. These results indicate a pleasing synergistic activity between Co-based aerogels and the enzyme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信