基于乙二醇的威廉姆森混合纳米流体在可拉伸/收缩平板上的热特性及其对太阳能电池板影响的研究

Q1 Chemical Engineering
{"title":"基于乙二醇的威廉姆森混合纳米流体在可拉伸/收缩平板上的热特性及其对太阳能电池板影响的研究","authors":"","doi":"10.1016/j.ijft.2024.100892","DOIUrl":null,"url":null,"abstract":"<div><div>The global requirement for sustainable energy supply to enhance industrial productivity and reduce production costs has focused researchers’ attention to renewable energy in recent years. Solar energy mitigates the dangers connected with the use of fossil fuels in electricity generation. This work is set to evaluate the heat transmission capacities of Williamson hybrid nanofluid flow across a flat plate with viscous dissipation and heat source. The mathematical model explaining the flow interaction of Williamson hybrid nanofluid, combining viscous dissipation, heat source, and temperature-variation thermal conductivity and viscosity, is created using conservation laws. The specified system of non-linear coupled partial differential equations undergoes non-similarity transformation. The resulting non-dimensional model is solved using the bivariate spectral weighted residual method. The accuracy of the method is proven by comparing obtained results with those in the literature, and a good agreement is observed. Graphs are utilized to explain the thermophysical properties that are being considered. The results show that the fluid temperature rises when there is a source of heating and viscous dissipation. The velocity and the fluid parameter <span><math><mrow><mo>(</mo><mi>W</mi><mi>e</mi><mo>)</mo></mrow></math></span> have an inverse connection, whereas the temperature of the fluid has the opposite impact. Moreover, when nanoparticles are present, the thermal boundary layer rises along with the nanoparticles, thickening the velocity boundary layer and decreasing fluid velocity. Findings also show that for the <span><math><mrow><mi>V</mi><mi>d</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>]</mo></mrow></mrow></math></span>, the skin drag force and Nusselt number retard by <span><math><mrow><mn>0</mn><mo>.</mo><mn>64</mn><mtext>%</mtext><mo>,</mo><mn>14</mn><mo>.</mo><mn>06</mn><mtext>%</mtext></mrow></math></span> for the shrinking sheet and <span><math><mrow><mn>0</mn><mo>.</mo><mn>21</mn><mtext>%</mtext><mo>,</mo><mn>6</mn><mo>.</mo><mn>57</mn><mtext>%</mtext></mrow></math></span> for the stretching sheet respectively. In the same vein, an 100% surge in the porosity parameter escalate the skin friction coefficient by 19.13% and 26.91% and the Nusselt number by 4.92% and 2.06% respectively for both the contracting and elastic sheet. The findings in the research will provide more insight in the design and improvement of solar panel plate efficiency.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of thermal properties of ethylene glycol-based Williamson hybrid-nanofluid over stretchable/shrinking flat plate and their effects on solar panels\",\"authors\":\"\",\"doi\":\"10.1016/j.ijft.2024.100892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The global requirement for sustainable energy supply to enhance industrial productivity and reduce production costs has focused researchers’ attention to renewable energy in recent years. Solar energy mitigates the dangers connected with the use of fossil fuels in electricity generation. This work is set to evaluate the heat transmission capacities of Williamson hybrid nanofluid flow across a flat plate with viscous dissipation and heat source. The mathematical model explaining the flow interaction of Williamson hybrid nanofluid, combining viscous dissipation, heat source, and temperature-variation thermal conductivity and viscosity, is created using conservation laws. The specified system of non-linear coupled partial differential equations undergoes non-similarity transformation. The resulting non-dimensional model is solved using the bivariate spectral weighted residual method. The accuracy of the method is proven by comparing obtained results with those in the literature, and a good agreement is observed. Graphs are utilized to explain the thermophysical properties that are being considered. The results show that the fluid temperature rises when there is a source of heating and viscous dissipation. The velocity and the fluid parameter <span><math><mrow><mo>(</mo><mi>W</mi><mi>e</mi><mo>)</mo></mrow></math></span> have an inverse connection, whereas the temperature of the fluid has the opposite impact. Moreover, when nanoparticles are present, the thermal boundary layer rises along with the nanoparticles, thickening the velocity boundary layer and decreasing fluid velocity. Findings also show that for the <span><math><mrow><mi>V</mi><mi>d</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>]</mo></mrow></mrow></math></span>, the skin drag force and Nusselt number retard by <span><math><mrow><mn>0</mn><mo>.</mo><mn>64</mn><mtext>%</mtext><mo>,</mo><mn>14</mn><mo>.</mo><mn>06</mn><mtext>%</mtext></mrow></math></span> for the shrinking sheet and <span><math><mrow><mn>0</mn><mo>.</mo><mn>21</mn><mtext>%</mtext><mo>,</mo><mn>6</mn><mo>.</mo><mn>57</mn><mtext>%</mtext></mrow></math></span> for the stretching sheet respectively. In the same vein, an 100% surge in the porosity parameter escalate the skin friction coefficient by 19.13% and 26.91% and the Nusselt number by 4.92% and 2.06% respectively for both the contracting and elastic sheet. The findings in the research will provide more insight in the design and improvement of solar panel plate efficiency.</div></div>\",\"PeriodicalId\":36341,\"journal\":{\"name\":\"International Journal of Thermofluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266620272400332X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266620272400332X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

近年来,全球要求可持续能源供应,以提高工业生产力和降低生产成本,这已成为研究人员关注可再生能源的焦点。太阳能缓解了使用化石燃料发电所带来的危险。这项工作的目的是评估威廉姆森混合纳米流体流过带粘性耗散和热源的平板的传热能力。利用守恒定律建立了解释威廉姆森混合纳米流体流动相互作用的数学模型,该模型结合了粘性耗散、热源、温度变化导热系数和粘度。指定的非线性耦合偏微分方程系统经过非相似性变换。使用双变量谱加权残差法求解所得到的非二维模型。通过将获得的结果与文献中的结果进行比较,证明了该方法的准确性,并观察到了良好的一致性。图表用于解释所考虑的热物理特性。结果表明,当存在加热源和粘性耗散时,流体温度会升高。速度和流体参数(We)呈反向关系,而流体温度的影响则相反。此外,当存在纳米颗粒时,热边界层与纳米颗粒一起上升,使速度边界层变厚,降低了流体速度。研究结果还表明,当 Vd∈[0.1,0.5] 时,收缩片的皮肤阻力和努塞尔特数分别降低了 0.64% 和 14.06%,拉伸片的皮肤阻力和努塞尔特数分别降低了 0.21% 和 6.57%。同样,孔隙率参数增加 100%,收缩板和弹性板的表皮摩擦系数分别增加 19.13% 和 26.91%,努塞尔特数分别增加 4.92% 和 2.06%。研究结果将为设计和提高太阳能电池板效率提供更多启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of thermal properties of ethylene glycol-based Williamson hybrid-nanofluid over stretchable/shrinking flat plate and their effects on solar panels
The global requirement for sustainable energy supply to enhance industrial productivity and reduce production costs has focused researchers’ attention to renewable energy in recent years. Solar energy mitigates the dangers connected with the use of fossil fuels in electricity generation. This work is set to evaluate the heat transmission capacities of Williamson hybrid nanofluid flow across a flat plate with viscous dissipation and heat source. The mathematical model explaining the flow interaction of Williamson hybrid nanofluid, combining viscous dissipation, heat source, and temperature-variation thermal conductivity and viscosity, is created using conservation laws. The specified system of non-linear coupled partial differential equations undergoes non-similarity transformation. The resulting non-dimensional model is solved using the bivariate spectral weighted residual method. The accuracy of the method is proven by comparing obtained results with those in the literature, and a good agreement is observed. Graphs are utilized to explain the thermophysical properties that are being considered. The results show that the fluid temperature rises when there is a source of heating and viscous dissipation. The velocity and the fluid parameter (We) have an inverse connection, whereas the temperature of the fluid has the opposite impact. Moreover, when nanoparticles are present, the thermal boundary layer rises along with the nanoparticles, thickening the velocity boundary layer and decreasing fluid velocity. Findings also show that for the Vd[0.1,0.5], the skin drag force and Nusselt number retard by 0.64%,14.06% for the shrinking sheet and 0.21%,6.57% for the stretching sheet respectively. In the same vein, an 100% surge in the porosity parameter escalate the skin friction coefficient by 19.13% and 26.91% and the Nusselt number by 4.92% and 2.06% respectively for both the contracting and elastic sheet. The findings in the research will provide more insight in the design and improvement of solar panel plate efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信