重掺杂 Gd3(Ga,Al)5O12:Ce、Mg 单晶中的光致发光光学和热淬灭:与 Ga3+、Ce3+ 和 Mg2+ 浓度的关系

IF 3.3 3区 物理与天体物理 Q2 OPTICS
V. Babin , P. Bohacek , A. Krasnikov , M. Nikl , L. Vasylechko , S. Zazubovich
{"title":"重掺杂 Gd3(Ga,Al)5O12:Ce、Mg 单晶中的光致发光光学和热淬灭:与 Ga3+、Ce3+ 和 Mg2+ 浓度的关系","authors":"V. Babin ,&nbsp;P. Bohacek ,&nbsp;A. Krasnikov ,&nbsp;M. Nikl ,&nbsp;L. Vasylechko ,&nbsp;S. Zazubovich","doi":"10.1016/j.jlumin.2024.120945","DOIUrl":null,"url":null,"abstract":"<div><div>Heavily doped single crystals of Gd<sub>3</sub>Ga<sub>x</sub>Al<sub>5-x</sub>O<sub>12</sub>:Ce, Mg (x = 2.46–2.95) with different concentrations of Ce (0.016–0.188 at.%) and Mg (0–0.083 at.%) are investigated by the X-ray diffraction, photoluminescence, and thermoluminescence methods. Dependences of the luminescence characteristics, as well as crystal lattice parameters and distances between the Ce<sup>3+</sup> and Mg<sup>2+</sup> ions, on the Ga, Ce, and Mg concentration are studied. Mechanisms of the processes, resulting in the photoluminescence optical and thermal quenching and acceleration of decay kinetics, and the influence of the crystal composition on these processes are discussed. The role of close {Ce<sup>3+</sup> - Mg<sup>2+</sup><sub>Ga</sub>} pairs in these processes is considered. At <em>T</em> &gt; 400 K, the luminescence thermal quenching is caused by the crossover process, while in the 200–350 K temperature range, by the electron transfer from the 5d<sub>1</sub> excited state of Ce<sup>3+</sup> to nearby defect levels (electron traps) located between the 5d<sub>1</sub> level and the conduction band. The latter process results also in the appearance of thermally stimulated luminescence, and its efficiency depends on the Ga<sup>3+</sup> content and concentration of intrinsic defects. The optimum concentrations of Ga<sup>3+</sup> and Mg<sup>2+</sup> ions in the investigated crystals are determined.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120945"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoluminescence optical and thermal quenching in heavily doped Gd3(Ga,Al)5O12:Ce, Mg single crystals: Dependence on the Ga3+, Ce3+, and Mg2+ concentration\",\"authors\":\"V. Babin ,&nbsp;P. Bohacek ,&nbsp;A. Krasnikov ,&nbsp;M. Nikl ,&nbsp;L. Vasylechko ,&nbsp;S. Zazubovich\",\"doi\":\"10.1016/j.jlumin.2024.120945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heavily doped single crystals of Gd<sub>3</sub>Ga<sub>x</sub>Al<sub>5-x</sub>O<sub>12</sub>:Ce, Mg (x = 2.46–2.95) with different concentrations of Ce (0.016–0.188 at.%) and Mg (0–0.083 at.%) are investigated by the X-ray diffraction, photoluminescence, and thermoluminescence methods. Dependences of the luminescence characteristics, as well as crystal lattice parameters and distances between the Ce<sup>3+</sup> and Mg<sup>2+</sup> ions, on the Ga, Ce, and Mg concentration are studied. Mechanisms of the processes, resulting in the photoluminescence optical and thermal quenching and acceleration of decay kinetics, and the influence of the crystal composition on these processes are discussed. The role of close {Ce<sup>3+</sup> - Mg<sup>2+</sup><sub>Ga</sub>} pairs in these processes is considered. At <em>T</em> &gt; 400 K, the luminescence thermal quenching is caused by the crossover process, while in the 200–350 K temperature range, by the electron transfer from the 5d<sub>1</sub> excited state of Ce<sup>3+</sup> to nearby defect levels (electron traps) located between the 5d<sub>1</sub> level and the conduction band. The latter process results also in the appearance of thermally stimulated luminescence, and its efficiency depends on the Ga<sup>3+</sup> content and concentration of intrinsic defects. The optimum concentrations of Ga<sup>3+</sup> and Mg<sup>2+</sup> ions in the investigated crystals are determined.</div></div>\",\"PeriodicalId\":16159,\"journal\":{\"name\":\"Journal of Luminescence\",\"volume\":\"277 \",\"pages\":\"Article 120945\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Luminescence\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002223132400509X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002223132400509X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

通过 X 射线衍射、光致发光和热致发光方法研究了不同浓度的 Ce(0.016-0.188%)和 Mg(0-0.083%)的 Gd3GaxAl5-xO12:Ce, Mg(x = 2.46-2.95)重掺杂单晶。研究了发光特性、晶格参数以及 Ce3+ 和 Mg2+ 离子之间的距离对 Ga、Ce 和 Mg 浓度的影响。讨论了导致光致发光光学和热淬灭以及衰变动力学加速的过程机理,以及晶体成分对这些过程的影响。研究还考虑了近距离{Ce3+ - Mg2+Ga}对在这些过程中的作用。在 T > 400 K 时,发光热淬灭是由交叉过程引起的,而在 200-350 K 温度范围内,则是由电子从 Ce3+ 的 5d1 激发态转移到位于 5d1 电平和导带之间的附近缺陷电平(电子陷阱)引起的。后一过程也会导致热刺激发光的出现,其效率取决于 Ga3+ 的含量和固有缺陷的浓度。研究确定了所研究晶体中 Ga3+ 和 Mg2+ 离子的最佳浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photoluminescence optical and thermal quenching in heavily doped Gd3(Ga,Al)5O12:Ce, Mg single crystals: Dependence on the Ga3+, Ce3+, and Mg2+ concentration
Heavily doped single crystals of Gd3GaxAl5-xO12:Ce, Mg (x = 2.46–2.95) with different concentrations of Ce (0.016–0.188 at.%) and Mg (0–0.083 at.%) are investigated by the X-ray diffraction, photoluminescence, and thermoluminescence methods. Dependences of the luminescence characteristics, as well as crystal lattice parameters and distances between the Ce3+ and Mg2+ ions, on the Ga, Ce, and Mg concentration are studied. Mechanisms of the processes, resulting in the photoluminescence optical and thermal quenching and acceleration of decay kinetics, and the influence of the crystal composition on these processes are discussed. The role of close {Ce3+ - Mg2+Ga} pairs in these processes is considered. At T > 400 K, the luminescence thermal quenching is caused by the crossover process, while in the 200–350 K temperature range, by the electron transfer from the 5d1 excited state of Ce3+ to nearby defect levels (electron traps) located between the 5d1 level and the conduction band. The latter process results also in the appearance of thermally stimulated luminescence, and its efficiency depends on the Ga3+ content and concentration of intrinsic defects. The optimum concentrations of Ga3+ and Mg2+ ions in the investigated crystals are determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Luminescence
Journal of Luminescence 物理-光学
CiteScore
6.70
自引率
13.90%
发文量
850
审稿时长
3.8 months
期刊介绍: The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid. We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信