{"title":"钢结构的腐蚀疲劳寿命模拟和可靠性分析","authors":"Heng Liu , Liang Zong , Yongbo Shao , Yang Ding","doi":"10.1016/j.jcsr.2024.109075","DOIUrl":null,"url":null,"abstract":"<div><div>Environmental corrosion and fatigue damage are two long-term existing factors that deteriorate the safety of steel structures during the service period. Furthermore, fatigue and corrosion exhibit obvious interaction effects and both have high dispersion characteristics. Therefore, reliability analysis with consideration of the corrosion fatigue interaction effect should be carried out. A corrosion fatigue damage propagation model with consideration of the interaction factor <em>k</em> was established to reflect the additional negative impact of the interaction effect. Based on the numerical calculation results, reliability analysis was carried out, corrosion fatigue reliability curves for each loading condition were obtained, and the impacts of environmental corrosive degree were analysed. The FE calculation results based on the proposed simulation method are in good agreement with the test, indicating the validity of the proposed corrosion fatigue simulation method. The corrosion fatigue reliability analysis results show that the corrosion fatigue life is greatly affected by the corrosion rate, and the corrosive environment has a more obvious effect on the life and distribution of corrosion fatigue life under a lower stress amplitude. The established corrosion fatigue life simulation method enables the accurate and facilitated prediction of corrosion fatigue life with consideration of the interaction effect and will provide a technical basis for the reliability analysis of steel structures.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"223 ","pages":"Article 109075"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion fatigue life simulation and reliability analysis of steel structures\",\"authors\":\"Heng Liu , Liang Zong , Yongbo Shao , Yang Ding\",\"doi\":\"10.1016/j.jcsr.2024.109075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Environmental corrosion and fatigue damage are two long-term existing factors that deteriorate the safety of steel structures during the service period. Furthermore, fatigue and corrosion exhibit obvious interaction effects and both have high dispersion characteristics. Therefore, reliability analysis with consideration of the corrosion fatigue interaction effect should be carried out. A corrosion fatigue damage propagation model with consideration of the interaction factor <em>k</em> was established to reflect the additional negative impact of the interaction effect. Based on the numerical calculation results, reliability analysis was carried out, corrosion fatigue reliability curves for each loading condition were obtained, and the impacts of environmental corrosive degree were analysed. The FE calculation results based on the proposed simulation method are in good agreement with the test, indicating the validity of the proposed corrosion fatigue simulation method. The corrosion fatigue reliability analysis results show that the corrosion fatigue life is greatly affected by the corrosion rate, and the corrosive environment has a more obvious effect on the life and distribution of corrosion fatigue life under a lower stress amplitude. The established corrosion fatigue life simulation method enables the accurate and facilitated prediction of corrosion fatigue life with consideration of the interaction effect and will provide a technical basis for the reliability analysis of steel structures.</div></div>\",\"PeriodicalId\":15557,\"journal\":{\"name\":\"Journal of Constructional Steel Research\",\"volume\":\"223 \",\"pages\":\"Article 109075\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Constructional Steel Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143974X24006254\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Constructional Steel Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143974X24006254","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
环境腐蚀和疲劳破坏是钢结构在使用期间安全性能下降的两个长期存在的因素。此外,疲劳和腐蚀表现出明显的交互效应,且都具有高度分散的特点。因此,应在考虑腐蚀疲劳交互效应的基础上进行可靠性分析。本文建立了一个考虑了相互作用因子 k 的腐蚀疲劳损伤扩展模型,以反映相互作用效应的额外负面影响。在数值计算结果的基础上,进行了可靠性分析,得到了各加载条件下的腐蚀疲劳可靠性曲线,并分析了环境腐蚀度的影响。基于所提模拟方法的有限元计算结果与试验结果吻合良好,表明所提腐蚀疲劳模拟方法是有效的。腐蚀疲劳可靠性分析结果表明,腐蚀疲劳寿命受腐蚀速率的影响较大,腐蚀环境对较低应力幅值下的腐蚀疲劳寿命及分布的影响更为明显。所建立的腐蚀疲劳寿命模拟方法能够在考虑相互作用效应的前提下准确、方便地预测腐蚀疲劳寿命,将为钢结构的可靠性分析提供技术依据。
Corrosion fatigue life simulation and reliability analysis of steel structures
Environmental corrosion and fatigue damage are two long-term existing factors that deteriorate the safety of steel structures during the service period. Furthermore, fatigue and corrosion exhibit obvious interaction effects and both have high dispersion characteristics. Therefore, reliability analysis with consideration of the corrosion fatigue interaction effect should be carried out. A corrosion fatigue damage propagation model with consideration of the interaction factor k was established to reflect the additional negative impact of the interaction effect. Based on the numerical calculation results, reliability analysis was carried out, corrosion fatigue reliability curves for each loading condition were obtained, and the impacts of environmental corrosive degree were analysed. The FE calculation results based on the proposed simulation method are in good agreement with the test, indicating the validity of the proposed corrosion fatigue simulation method. The corrosion fatigue reliability analysis results show that the corrosion fatigue life is greatly affected by the corrosion rate, and the corrosive environment has a more obvious effect on the life and distribution of corrosion fatigue life under a lower stress amplitude. The established corrosion fatigue life simulation method enables the accurate and facilitated prediction of corrosion fatigue life with consideration of the interaction effect and will provide a technical basis for the reliability analysis of steel structures.
期刊介绍:
The Journal of Constructional Steel Research provides an international forum for the presentation and discussion of the latest developments in structural steel research and their applications. It is aimed not only at researchers but also at those likely to be most affected by research results, i.e. designers and fabricators. Original papers of a high standard dealing with all aspects of steel research including theoretical and experimental research on elements, assemblages, connection and material properties are considered for publication.