使用不同摩尔比的镍铝复合氢氧化物吸附/解吸钒离子的可行性

IF 5.5 Q1 ENGINEERING, CHEMICAL
Fumihiko Ogata , Yuya Teranishi , Noriaki Nagai , Yugo Uematsu , Megumu Toda , Masashi Otani , Chalermpong Saenjum , Naohito Kawasaki
{"title":"使用不同摩尔比的镍铝复合氢氧化物吸附/解吸钒离子的可行性","authors":"Fumihiko Ogata ,&nbsp;Yuya Teranishi ,&nbsp;Noriaki Nagai ,&nbsp;Yugo Uematsu ,&nbsp;Megumu Toda ,&nbsp;Masashi Otani ,&nbsp;Chalermpong Saenjum ,&nbsp;Naohito Kawasaki","doi":"10.1016/j.ceja.2024.100656","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, metal complex hydroxides containing nickel (Ni) and aluminum (Al) at different molar ratios (Ni:Al = 1:1 (NA11), 1:2 (NA12), 2:1 (NA21), 3:1 (NA31), and 4:1 (NA41)) were prepared. Scanning electron microscopy images, X-ray diffraction patterns, specific surface area, number of hydroxyl groups, and pH<sub>pzc</sub> were evaluated. Further, the adsorption capacity of vanadium ions was assessed, with NA21 showing a high potential to adsorb vanadium ions from the aqueous phase (177.5 mg/g). In addition, the effects of various factors, including pH, contact time, initial concentration, and temperature, on the adsorption of vanadium ions were demonstrated in this study using NA21. The optimal pH value for adsorbing vanadium ions was 5.0. Adsorption isotherms and kinetic data were fitted to a pseudo-second-order model (correlation coefficient: 0.958) and a Freundlich model (correlation coefficient: 0.930–0.982), respectively. This study elucidated that a part of the adsorption mechanism of vanadium was related to ion exchange and characteristics of NA21 surface. Moreover, NA21 showed capability to selectively adsorb vanadium ions from binary solution system containing chloride, nitrate, or sulfate ions. Vanadium ions adsorbed onto NA21 were more easily desorbed by a sodium hydroxide solution than a sodium sulfate solution. NA21 demonstrated consistent performance over at least three adsorption and desorption cycles under experimental conditions of this study. These findings provided valuable insights into the recovery of vanadium ions from aqueous media via adsorption/desorption treatment using NA21.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility of vanadium ion adsorption/desorption using nickel–aluminum complex hydroxides with different molar ratios\",\"authors\":\"Fumihiko Ogata ,&nbsp;Yuya Teranishi ,&nbsp;Noriaki Nagai ,&nbsp;Yugo Uematsu ,&nbsp;Megumu Toda ,&nbsp;Masashi Otani ,&nbsp;Chalermpong Saenjum ,&nbsp;Naohito Kawasaki\",\"doi\":\"10.1016/j.ceja.2024.100656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Herein, metal complex hydroxides containing nickel (Ni) and aluminum (Al) at different molar ratios (Ni:Al = 1:1 (NA11), 1:2 (NA12), 2:1 (NA21), 3:1 (NA31), and 4:1 (NA41)) were prepared. Scanning electron microscopy images, X-ray diffraction patterns, specific surface area, number of hydroxyl groups, and pH<sub>pzc</sub> were evaluated. Further, the adsorption capacity of vanadium ions was assessed, with NA21 showing a high potential to adsorb vanadium ions from the aqueous phase (177.5 mg/g). In addition, the effects of various factors, including pH, contact time, initial concentration, and temperature, on the adsorption of vanadium ions were demonstrated in this study using NA21. The optimal pH value for adsorbing vanadium ions was 5.0. Adsorption isotherms and kinetic data were fitted to a pseudo-second-order model (correlation coefficient: 0.958) and a Freundlich model (correlation coefficient: 0.930–0.982), respectively. This study elucidated that a part of the adsorption mechanism of vanadium was related to ion exchange and characteristics of NA21 surface. Moreover, NA21 showed capability to selectively adsorb vanadium ions from binary solution system containing chloride, nitrate, or sulfate ions. Vanadium ions adsorbed onto NA21 were more easily desorbed by a sodium hydroxide solution than a sodium sulfate solution. NA21 demonstrated consistent performance over at least three adsorption and desorption cycles under experimental conditions of this study. These findings provided valuable insights into the recovery of vanadium ions from aqueous media via adsorption/desorption treatment using NA21.</div></div>\",\"PeriodicalId\":9749,\"journal\":{\"name\":\"Chemical Engineering Journal Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666821124000735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821124000735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文制备了不同摩尔比(Ni:Al = 1:1 (NA11)、1:2 (NA12)、2:1 (NA21)、3:1 (NA31) 和 4:1 (NA41))的含镍(Ni)和铝(Al)的金属复合氢氧化物。对扫描电子显微镜图像、X 射线衍射图样、比表面积、羟基数量和 pHpzc 进行了评估。此外,还对钒离子的吸附能力进行了评估,结果表明 NA21 具有很高的吸附水相中钒离子的潜力(177.5 mg/g)。此外,本研究还利用 NA21 验证了 pH 值、接触时间、初始浓度和温度等各种因素对钒离子吸附的影响。吸附钒离子的最佳 pH 值为 5.0。吸附等温线和动力学数据分别拟合为假二阶模型(相关系数:0.958)和 Freundlich 模型(相关系数:0.930-0.982)。这项研究阐明了钒的部分吸附机理与离子交换和 NA21 表面的特性有关。此外,NA21还能选择性地吸附含有氯离子、硝酸根离子或硫酸根离子的二元溶液体系中的钒离子。与硫酸钠溶液相比,NA21更容易被氢氧化钠溶液解吸。在本研究的实验条件下,NA21至少在三个吸附和解吸循环中表现出一致的性能。这些发现为利用 NA21 通过吸附/解吸处理从水介质中回收钒离子提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feasibility of vanadium ion adsorption/desorption using nickel–aluminum complex hydroxides with different molar ratios
Herein, metal complex hydroxides containing nickel (Ni) and aluminum (Al) at different molar ratios (Ni:Al = 1:1 (NA11), 1:2 (NA12), 2:1 (NA21), 3:1 (NA31), and 4:1 (NA41)) were prepared. Scanning electron microscopy images, X-ray diffraction patterns, specific surface area, number of hydroxyl groups, and pHpzc were evaluated. Further, the adsorption capacity of vanadium ions was assessed, with NA21 showing a high potential to adsorb vanadium ions from the aqueous phase (177.5 mg/g). In addition, the effects of various factors, including pH, contact time, initial concentration, and temperature, on the adsorption of vanadium ions were demonstrated in this study using NA21. The optimal pH value for adsorbing vanadium ions was 5.0. Adsorption isotherms and kinetic data were fitted to a pseudo-second-order model (correlation coefficient: 0.958) and a Freundlich model (correlation coefficient: 0.930–0.982), respectively. This study elucidated that a part of the adsorption mechanism of vanadium was related to ion exchange and characteristics of NA21 surface. Moreover, NA21 showed capability to selectively adsorb vanadium ions from binary solution system containing chloride, nitrate, or sulfate ions. Vanadium ions adsorbed onto NA21 were more easily desorbed by a sodium hydroxide solution than a sodium sulfate solution. NA21 demonstrated consistent performance over at least three adsorption and desorption cycles under experimental conditions of this study. These findings provided valuable insights into the recovery of vanadium ions from aqueous media via adsorption/desorption treatment using NA21.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信