Wenping Yuan , Jiangzhou Xia , Chaoqing Song , Ying-Ping Wang
{"title":"模拟陆地碳汇:陆地生态系统模型的进展与挑战","authors":"Wenping Yuan , Jiangzhou Xia , Chaoqing Song , Ying-Ping Wang","doi":"10.1016/j.agrformet.2024.110264","DOIUrl":null,"url":null,"abstract":"<div><div>Terrestrial ecosystems play an important role in regulating the balance of global carbon cycle by sequestrating CO<sub>2</sub> of atmosphere. Terrestrial ecosystem models are a critical tool for quantifying the magnitude, interannual variability and long-term trends of the land carbon sink across various spatial and temporal scales; however, despite extensive research, large uncertainties and challenges still persist. This review first summarizes decades of history in ecosystem model development in terms of model theory and methods. We then identify model uncertainties, including those arising from model algorithms, parameterization and forcing data. Finally, we propose new opportunities to improve ecosystem models for accurately simulating the land carbon sink, including emerging process-based knowledge from observations and big data, as well as model-data fusion methods.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating the land carbon sink: Progresses and challenges of terrestrial ecosystem models\",\"authors\":\"Wenping Yuan , Jiangzhou Xia , Chaoqing Song , Ying-Ping Wang\",\"doi\":\"10.1016/j.agrformet.2024.110264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Terrestrial ecosystems play an important role in regulating the balance of global carbon cycle by sequestrating CO<sub>2</sub> of atmosphere. Terrestrial ecosystem models are a critical tool for quantifying the magnitude, interannual variability and long-term trends of the land carbon sink across various spatial and temporal scales; however, despite extensive research, large uncertainties and challenges still persist. This review first summarizes decades of history in ecosystem model development in terms of model theory and methods. We then identify model uncertainties, including those arising from model algorithms, parameterization and forcing data. Finally, we propose new opportunities to improve ecosystem models for accurately simulating the land carbon sink, including emerging process-based knowledge from observations and big data, as well as model-data fusion methods.</div></div>\",\"PeriodicalId\":50839,\"journal\":{\"name\":\"Agricultural and Forest Meteorology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural and Forest Meteorology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168192324003770\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192324003770","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Simulating the land carbon sink: Progresses and challenges of terrestrial ecosystem models
Terrestrial ecosystems play an important role in regulating the balance of global carbon cycle by sequestrating CO2 of atmosphere. Terrestrial ecosystem models are a critical tool for quantifying the magnitude, interannual variability and long-term trends of the land carbon sink across various spatial and temporal scales; however, despite extensive research, large uncertainties and challenges still persist. This review first summarizes decades of history in ecosystem model development in terms of model theory and methods. We then identify model uncertainties, including those arising from model algorithms, parameterization and forcing data. Finally, we propose new opportunities to improve ecosystem models for accurately simulating the land carbon sink, including emerging process-based knowledge from observations and big data, as well as model-data fusion methods.
期刊介绍:
Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published.
Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.