椭圆上解析函数的高斯-洛巴托正交误差边界

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hiroshi Sugiura , Takemitsu Hasegawa
{"title":"椭圆上解析函数的高斯-洛巴托正交误差边界","authors":"Hiroshi Sugiura ,&nbsp;Takemitsu Hasegawa","doi":"10.1016/j.cam.2024.116326","DOIUrl":null,"url":null,"abstract":"<div><div>For the (<span><math><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></math></span>)-point Gauss–Jacobi–Lobatto quadrature to integrals with the Jacobi weight function <span><math><mrow><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mi>β</mi></mrow></msup></mrow></math></span> (<span><math><mrow><mi>α</mi><mo>&gt;</mo><mo>−</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>β</mi><mo>&gt;</mo><mo>−</mo><mn>1</mn></mrow></math></span>) over the interval <span><math><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>, we estimate the location where the kernel of the error functional for functions analytic on an ellipse and its interior in the complex plane attains its maximum modulus. As in our previous work on the Gauss–Jacobi rule, when <span><math><mrow><mi>α</mi><mo>≠</mo><mi>β</mi></mrow></math></span>, the location is the intersection point of the ellipse with the real axis in the complex plane. When <span><math><mrow><mi>α</mi><mo>=</mo><mi>β</mi></mrow></math></span> (the Gegenbauer weight), it is the intersection points with the real axis for <span><math><mrow><mo>−</mo><mn>1</mn><mo>&lt;</mo><mi>α</mi><mo>≤</mo><mn>0</mn></mrow></math></span> or for <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>≤</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><msub><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msub><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span>, and with the imaginary axis for <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>≤</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>&gt;</mo><msub><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msub><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> or for <span><math><mrow><mi>α</mi><mo>&gt;</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>. Here, <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msub><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> (<span><math><mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span>) is a monotonously decreasing function for <span><math><mrow><mi>α</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> with <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msub><mrow><mo>(</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mo>lim</mo></mrow><mrow><mi>α</mi><mo>→</mo><mo>+</mo><mn>0</mn></mrow></msub><msub><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msub><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow><mo>=</mo><mi>∞</mi></mrow></math></span>. Some numerical results are given to confirm the locations.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error bounds for Gauss–Lobatto quadrature of analytic functions on an ellipse\",\"authors\":\"Hiroshi Sugiura ,&nbsp;Takemitsu Hasegawa\",\"doi\":\"10.1016/j.cam.2024.116326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For the (<span><math><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></math></span>)-point Gauss–Jacobi–Lobatto quadrature to integrals with the Jacobi weight function <span><math><mrow><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mi>β</mi></mrow></msup></mrow></math></span> (<span><math><mrow><mi>α</mi><mo>&gt;</mo><mo>−</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>β</mi><mo>&gt;</mo><mo>−</mo><mn>1</mn></mrow></math></span>) over the interval <span><math><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>, we estimate the location where the kernel of the error functional for functions analytic on an ellipse and its interior in the complex plane attains its maximum modulus. As in our previous work on the Gauss–Jacobi rule, when <span><math><mrow><mi>α</mi><mo>≠</mo><mi>β</mi></mrow></math></span>, the location is the intersection point of the ellipse with the real axis in the complex plane. When <span><math><mrow><mi>α</mi><mo>=</mo><mi>β</mi></mrow></math></span> (the Gegenbauer weight), it is the intersection points with the real axis for <span><math><mrow><mo>−</mo><mn>1</mn><mo>&lt;</mo><mi>α</mi><mo>≤</mo><mn>0</mn></mrow></math></span> or for <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>≤</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><msub><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msub><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span>, and with the imaginary axis for <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>≤</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>&gt;</mo><msub><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msub><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> or for <span><math><mrow><mi>α</mi><mo>&gt;</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>. Here, <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msub><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> (<span><math><mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span>) is a monotonously decreasing function for <span><math><mrow><mi>α</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> with <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msub><mrow><mo>(</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mo>lim</mo></mrow><mrow><mi>α</mi><mo>→</mo><mo>+</mo><mn>0</mn></mrow></msub><msub><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msub><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow><mo>=</mo><mi>∞</mi></mrow></math></span>. Some numerical results are given to confirm the locations.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

对于区间 [-1,1] 上的 (n+2) 点高斯-雅各比-洛巴托正交积分与雅各比权重函数 (1-t)α(1+t)β (α>-1, β>-1),我们估计了复平面上椭圆及其内部解析函数误差函数核达到最大模的位置。与我们之前关于高斯-雅可比法则的研究一样,当 α≠β 时,该位置是椭圆与复平面实轴的交点。当 α=β 时(格根鲍尔权重),它是 -1<α≤0 或 0<α≤52 和 1≤n≤n+(α) 与实轴的交点,以及 0<α≤52 和 n>n+(α) 或 α>52 与虚轴的交点。这里,n+(α) (>0) 是α>0 时的单调递减函数,n+(52)=1,limα→+0n+(α)=∞。给出了一些数值结果来证实这些位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error bounds for Gauss–Lobatto quadrature of analytic functions on an ellipse
For the (n+2)-point Gauss–Jacobi–Lobatto quadrature to integrals with the Jacobi weight function (1t)α(1+t)β (α>1, β>1) over the interval [1,1], we estimate the location where the kernel of the error functional for functions analytic on an ellipse and its interior in the complex plane attains its maximum modulus. As in our previous work on the Gauss–Jacobi rule, when αβ, the location is the intersection point of the ellipse with the real axis in the complex plane. When α=β (the Gegenbauer weight), it is the intersection points with the real axis for 1<α0 or for 0<α52 and 1nn+(α), and with the imaginary axis for 0<α52 and n>n+(α) or for α>52. Here, n+(α) (>0) is a monotonously decreasing function for α>0 with n+(52)=1 and limα+0n+(α)=. Some numerical results are given to confirm the locations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信