具有空间不均匀吸收的多孔介质方程。第一部分:自相似解

IF 1.2 3区 数学 Q1 MATHEMATICS
Razvan Gabriel Iagar , Diana-Rodica Munteanu
{"title":"具有空间不均匀吸收的多孔介质方程。第一部分:自相似解","authors":"Razvan Gabriel Iagar ,&nbsp;Diana-Rodica Munteanu","doi":"10.1016/j.jmaa.2024.128965","DOIUrl":null,"url":null,"abstract":"<div><div>This is the first of a two-parts work on the qualitative properties and large time behavior for the following quasilinear equation involving a spatially inhomogeneous absorption<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>Δ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>σ</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo></math></span></span></span> posed for <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, <span><math><mi>N</mi><mo>≥</mo><mn>1</mn></math></span>, and in the range of exponents <span><math><mn>1</mn><mo>&lt;</mo><mi>m</mi><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span>, <span><math><mi>σ</mi><mo>&gt;</mo><mn>0</mn></math></span>. We give a complete classification of (singular) self-similar solutions of the form<span><span><span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup><mi>f</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mi>β</mi></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace><mi>α</mi><mo>=</mo><mfrac><mrow><mi>σ</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>σ</mi><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>2</mn><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mfrac><mo>,</mo><mspace></mspace><mi>β</mi><mo>=</mo><mfrac><mrow><mi>p</mi><mo>−</mo><mi>m</mi></mrow><mrow><mi>σ</mi><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>2</mn><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mfrac><mo>,</mo></math></span></span></span> showing that their form and behavior strongly depends on the critical exponent<span><span><span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>σ</mi><mo>)</mo><mo>=</mo><mi>m</mi><mo>+</mo><mfrac><mrow><mi>σ</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>.</mo></math></span></span></span> For <span><math><mi>p</mi><mo>≥</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>σ</mi><mo>)</mo></math></span>, we prove that all self-similar solutions have a tail as <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>→</mo><mo>∞</mo></math></span> of one of the forms<span><span><span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∼</mo><mi>C</mi><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mo>(</mo><mi>σ</mi><mo>+</mo><mn>2</mn><mo>)</mo><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mi>m</mi><mo>)</mo></mrow></msup><mspace></mspace><mrow><mi>or</mi></mrow><mspace></mspace><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∼</mo><msup><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>σ</mi><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>,</mo></math></span></span></span> while for <span><math><mi>m</mi><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>σ</mi><mo>)</mo></math></span> we add to the previous the <em>existence and uniqueness</em> of a <em>compactly supported very singular solution</em>. These solutions will be employed in describing the large time behavior of general solutions in a forthcoming paper.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 1","pages":"Article 128965"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A porous medium equation with spatially inhomogeneous absorption. Part I: Self-similar solutions\",\"authors\":\"Razvan Gabriel Iagar ,&nbsp;Diana-Rodica Munteanu\",\"doi\":\"10.1016/j.jmaa.2024.128965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This is the first of a two-parts work on the qualitative properties and large time behavior for the following quasilinear equation involving a spatially inhomogeneous absorption<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>Δ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>σ</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo></math></span></span></span> posed for <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, <span><math><mi>N</mi><mo>≥</mo><mn>1</mn></math></span>, and in the range of exponents <span><math><mn>1</mn><mo>&lt;</mo><mi>m</mi><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span>, <span><math><mi>σ</mi><mo>&gt;</mo><mn>0</mn></math></span>. We give a complete classification of (singular) self-similar solutions of the form<span><span><span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup><mi>f</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mi>β</mi></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace><mi>α</mi><mo>=</mo><mfrac><mrow><mi>σ</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>σ</mi><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>2</mn><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mfrac><mo>,</mo><mspace></mspace><mi>β</mi><mo>=</mo><mfrac><mrow><mi>p</mi><mo>−</mo><mi>m</mi></mrow><mrow><mi>σ</mi><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>2</mn><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mfrac><mo>,</mo></math></span></span></span> showing that their form and behavior strongly depends on the critical exponent<span><span><span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>σ</mi><mo>)</mo><mo>=</mo><mi>m</mi><mo>+</mo><mfrac><mrow><mi>σ</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>.</mo></math></span></span></span> For <span><math><mi>p</mi><mo>≥</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>σ</mi><mo>)</mo></math></span>, we prove that all self-similar solutions have a tail as <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>→</mo><mo>∞</mo></math></span> of one of the forms<span><span><span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∼</mo><mi>C</mi><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mo>(</mo><mi>σ</mi><mo>+</mo><mn>2</mn><mo>)</mo><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mi>m</mi><mo>)</mo></mrow></msup><mspace></mspace><mrow><mi>or</mi></mrow><mspace></mspace><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∼</mo><msup><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>σ</mi><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>,</mo></math></span></span></span> while for <span><math><mi>m</mi><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>σ</mi><mo>)</mo></math></span> we add to the previous the <em>existence and uniqueness</em> of a <em>compactly supported very singular solution</em>. These solutions will be employed in describing the large time behavior of general solutions in a forthcoming paper.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 1\",\"pages\":\"Article 128965\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24008874\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24008874","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文分为两部分,第一部分是关于以下涉及空间不均匀吸收的准线性方程的定性性质和大时间行为∂tu=Δum-|x|σup,该方程是在(x,t)∈RN×(0,∞),N≥1,且指数范围为 1<m<p<∞,σ>0 时提出的。我们给出了形式为u(x,t)=t-αf(|x|t-β),α=σ+2σ(m-1)+2(p-1),β=p-mσ(m-1)+2(p-1)的(奇异)自相似解的完整分类,表明它们的形式和行为强烈依赖于临界指数pF(σ)=m+σ+2N。对于 p≥pF(σ),我们证明所有自相似解都有一个尾部为 |x|→∞ 的形式之一su(x,t)∼C|x|-(σ+2)/(p-m)或u(x,t)∼(1p-1)1/(p-1)|x|-σ/(p-1),而对于 m<;p<pF(σ)时,我们在前面的基础上增加了一个紧凑支撑的非常奇异解的存在性和唯一性。这些解将在即将发表的论文中用于描述一般解的大时间行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A porous medium equation with spatially inhomogeneous absorption. Part I: Self-similar solutions
This is the first of a two-parts work on the qualitative properties and large time behavior for the following quasilinear equation involving a spatially inhomogeneous absorptiontu=Δum|x|σup, posed for (x,t)RN×(0,), N1, and in the range of exponents 1<m<p<, σ>0. We give a complete classification of (singular) self-similar solutions of the formu(x,t)=tαf(|x|tβ),α=σ+2σ(m1)+2(p1),β=pmσ(m1)+2(p1), showing that their form and behavior strongly depends on the critical exponentpF(σ)=m+σ+2N. For ppF(σ), we prove that all self-similar solutions have a tail as |x| of one of the formsu(x,t)C|x|(σ+2)/(pm)oru(x,t)(1p1)1/(p1)|x|σ/(p1), while for m<p<pF(σ) we add to the previous the existence and uniqueness of a compactly supported very singular solution. These solutions will be employed in describing the large time behavior of general solutions in a forthcoming paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信