{"title":"无穷维费弗曼-迈耶对偶中的相对弱紧凑性","authors":"Vasily Melnikov","doi":"10.1016/j.jmaa.2024.128969","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>E</em> be a Banach space such that <span><math><msup><mrow><mi>E</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> has the Radon-Nikodým property. The aim of this work is to connect relative weak compactness in the <em>E</em>-valued martingale Hardy space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> to a convex compactness criterion in a weaker topology, such as the topology of uniform convergence on compacts in measure. These results represent a dynamic version of the deep result of Diestel, Ruess, and Schachermayer on relative weak compactness in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>. In the reflexive case, we obtain a Kadec-Pełczyński dichotomy for <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>-bounded sequences, which decomposes a subsequence into a relatively weakly compact part, a pointwise weakly convexly convergent part, and a null part converging to zero uniformly on compacts in measure. As a corollary, we investigate a parameterized version of the vector-valued Komlós theorem without the assumption of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>-boundedness.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative weak compactness in infinite-dimensional Fefferman-Meyer duality\",\"authors\":\"Vasily Melnikov\",\"doi\":\"10.1016/j.jmaa.2024.128969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>E</em> be a Banach space such that <span><math><msup><mrow><mi>E</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> has the Radon-Nikodým property. The aim of this work is to connect relative weak compactness in the <em>E</em>-valued martingale Hardy space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> to a convex compactness criterion in a weaker topology, such as the topology of uniform convergence on compacts in measure. These results represent a dynamic version of the deep result of Diestel, Ruess, and Schachermayer on relative weak compactness in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>. In the reflexive case, we obtain a Kadec-Pełczyński dichotomy for <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>-bounded sequences, which decomposes a subsequence into a relatively weakly compact part, a pointwise weakly convexly convergent part, and a null part converging to zero uniformly on compacts in measure. As a corollary, we investigate a parameterized version of the vector-valued Komlós theorem without the assumption of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>-boundedness.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24008916\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24008916","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
让 E 是一个巴拿赫空间,使得 E′具有 Radon-Nikodým 属性。这项工作的目的是将 E 值鞅哈代空间 H1(μ,E) 中的相对弱紧凑性与较弱拓扑学中的凸紧凑性准则联系起来,例如度量紧凑上的均匀收敛拓扑学。这些结果代表了 Diestel、Ruess 和 Schachermayer 关于 L1(μ,E) 中相对弱紧凑性的深层结果的动态版本。在反向情况下,我们得到了 H1(μ,E) 有界序列的卡德克-佩乌琴斯基二分法,它将子序列分解为相对弱紧凑部分、点弱凸收敛部分和在度量紧凑上均匀收敛于零的空部分。作为推论,我们研究了向量值孔洛斯定理的参数化版本,而无需假设H1(μ,E)有界。
Relative weak compactness in infinite-dimensional Fefferman-Meyer duality
Let E be a Banach space such that has the Radon-Nikodým property. The aim of this work is to connect relative weak compactness in the E-valued martingale Hardy space to a convex compactness criterion in a weaker topology, such as the topology of uniform convergence on compacts in measure. These results represent a dynamic version of the deep result of Diestel, Ruess, and Schachermayer on relative weak compactness in . In the reflexive case, we obtain a Kadec-Pełczyński dichotomy for -bounded sequences, which decomposes a subsequence into a relatively weakly compact part, a pointwise weakly convexly convergent part, and a null part converging to zero uniformly on compacts in measure. As a corollary, we investigate a parameterized version of the vector-valued Komlós theorem without the assumption of -boundedness.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.