{"title":"通过混合定向能沉积加工镍基超合金实现定制微结构","authors":"","doi":"10.1016/j.addlet.2024.100248","DOIUrl":null,"url":null,"abstract":"<div><div>The technological advances in additive manufacturing, particularly laser based directed energy deposition (DED), revolutionized the production of complex metal components. Despite this progress, the oriented heat flux and several reheating thermal cycles can induce a strongly textured microstructure, which induces an anisotropic mechanical behavior. In addition, considerable residual stresses typically require additional post-processing. Therefore, hybrid process chains for additive manufacturing (AM) are being developed, which aim at integrating conventional post-processing into the AM process. However, a detailed investigation of thermal and mechanical effects of such hybrid processes on the mechanical properties and their interrelation is lacking. In an experimental study, we explore the integration of thermal and mechanical processing steps within the DED process chain to locally tailor microstructures and mechanical properties. Through electron backscatter diffraction measurements, we demonstrate significant microstructural changes of DED-manufactured nickel-based superalloy samples using deep rolling and laser heat treatment. A mechanical surface deformation induces microstructural misorientation leading to an increase in hardness down to substantial depth of several hundred micrometers. Additionally, the targeted management of heat input during laser heat treatment results in different grain morphologies and sizes, affecting average microhardness within a significant depth. The results demonstrate the potential for microstructural tailoring using hybrid AM process chains, while a substantial sensitivity of the microstructure to thermal and mechanical load emphasizes the importance of a precise process control. This work provides an understanding of the process-microstructure-property relationship required for developing new process pathways in hybrid AM that integrate thermal and mechanical processes into DED manufacturing.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling tailored microstructures by hybrid directed energy deposition processing of a nickel-based superalloy\",\"authors\":\"\",\"doi\":\"10.1016/j.addlet.2024.100248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The technological advances in additive manufacturing, particularly laser based directed energy deposition (DED), revolutionized the production of complex metal components. Despite this progress, the oriented heat flux and several reheating thermal cycles can induce a strongly textured microstructure, which induces an anisotropic mechanical behavior. In addition, considerable residual stresses typically require additional post-processing. Therefore, hybrid process chains for additive manufacturing (AM) are being developed, which aim at integrating conventional post-processing into the AM process. However, a detailed investigation of thermal and mechanical effects of such hybrid processes on the mechanical properties and their interrelation is lacking. In an experimental study, we explore the integration of thermal and mechanical processing steps within the DED process chain to locally tailor microstructures and mechanical properties. Through electron backscatter diffraction measurements, we demonstrate significant microstructural changes of DED-manufactured nickel-based superalloy samples using deep rolling and laser heat treatment. A mechanical surface deformation induces microstructural misorientation leading to an increase in hardness down to substantial depth of several hundred micrometers. Additionally, the targeted management of heat input during laser heat treatment results in different grain morphologies and sizes, affecting average microhardness within a significant depth. The results demonstrate the potential for microstructural tailoring using hybrid AM process chains, while a substantial sensitivity of the microstructure to thermal and mechanical load emphasizes the importance of a precise process control. This work provides an understanding of the process-microstructure-property relationship required for developing new process pathways in hybrid AM that integrate thermal and mechanical processes into DED manufacturing.</div></div>\",\"PeriodicalId\":72068,\"journal\":{\"name\":\"Additive manufacturing letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772369024000562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369024000562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
摘要
快速成型制造技术,特别是基于激光的定向能沉积(DED)技术的进步,彻底改变了复杂金属部件的生产。尽管取得了这一进步,但定向热通量和多次再加热热循环会导致微观结构产生强烈纹理,从而诱发各向异性的机械行为。此外,相当大的残余应力通常需要额外的后处理。因此,目前正在开发用于增材制造(AM)的混合工艺链,旨在将传统的后处理集成到增材制造工艺中。然而,目前还缺乏对这种混合工艺对机械性能的热效应和机械效应及其相互关系的详细研究。在一项实验研究中,我们探索了在 DED 工艺链中整合热加工和机械加工步骤,以局部定制微观结构和机械性能的方法。通过电子反向散射衍射测量,我们证明了使用深轧制和激光热处理的 DED 制造的镍基超合金样品发生了显著的微观结构变化。机械表面变形会引起微观结构错向,导致硬度增加,深度可达数百微米。此外,在激光热处理过程中对热输入进行有针对性的管理会产生不同的晶粒形态和尺寸,从而影响相当深度内的平均显微硬度。研究结果证明了利用混合 AM 工艺链定制微观结构的潜力,而微观结构对热负荷和机械负荷的高度敏感性则强调了精确工艺控制的重要性。这项工作让我们了解了在混合 AM 中开发新工艺途径所需的工艺-微结构-性能关系,这种新工艺途径将热工艺和机械工艺整合到了 DED 制造中。
Enabling tailored microstructures by hybrid directed energy deposition processing of a nickel-based superalloy
The technological advances in additive manufacturing, particularly laser based directed energy deposition (DED), revolutionized the production of complex metal components. Despite this progress, the oriented heat flux and several reheating thermal cycles can induce a strongly textured microstructure, which induces an anisotropic mechanical behavior. In addition, considerable residual stresses typically require additional post-processing. Therefore, hybrid process chains for additive manufacturing (AM) are being developed, which aim at integrating conventional post-processing into the AM process. However, a detailed investigation of thermal and mechanical effects of such hybrid processes on the mechanical properties and their interrelation is lacking. In an experimental study, we explore the integration of thermal and mechanical processing steps within the DED process chain to locally tailor microstructures and mechanical properties. Through electron backscatter diffraction measurements, we demonstrate significant microstructural changes of DED-manufactured nickel-based superalloy samples using deep rolling and laser heat treatment. A mechanical surface deformation induces microstructural misorientation leading to an increase in hardness down to substantial depth of several hundred micrometers. Additionally, the targeted management of heat input during laser heat treatment results in different grain morphologies and sizes, affecting average microhardness within a significant depth. The results demonstrate the potential for microstructural tailoring using hybrid AM process chains, while a substantial sensitivity of the microstructure to thermal and mechanical load emphasizes the importance of a precise process control. This work provides an understanding of the process-microstructure-property relationship required for developing new process pathways in hybrid AM that integrate thermal and mechanical processes into DED manufacturing.