双图和迈锡尔图中的互见性和一般位置

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Dhanya Roy , Sandi Klavžar , Aparna Lakshmanan S
{"title":"双图和迈锡尔图中的互见性和一般位置","authors":"Dhanya Roy ,&nbsp;Sandi Klavžar ,&nbsp;Aparna Lakshmanan S","doi":"10.1016/j.amc.2024.129131","DOIUrl":null,"url":null,"abstract":"<div><div>The general position problem in graphs is to find the largest possible set of vertices with the property that no three of them lie on a common shortest path. The mutual-visibility problem in graphs is to find the maximum number of vertices that can be selected such that every pair of vertices in the collection has a shortest path between them with no vertex from the collection as an internal vertex. Here, the general position problem and the mutual-visibility problem are investigated in double graphs and in Mycielskian graphs. Sharp general bounds are proved, in particular involving the total and the outer mutual-visibility number of base graphs. Several exact values are also determined, in particular the mutual-visibility number of the double graphs and of the Mycielskian of cycles.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mutual-visibility and general position in double graphs and in Mycielskians\",\"authors\":\"Dhanya Roy ,&nbsp;Sandi Klavžar ,&nbsp;Aparna Lakshmanan S\",\"doi\":\"10.1016/j.amc.2024.129131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The general position problem in graphs is to find the largest possible set of vertices with the property that no three of them lie on a common shortest path. The mutual-visibility problem in graphs is to find the maximum number of vertices that can be selected such that every pair of vertices in the collection has a shortest path between them with no vertex from the collection as an internal vertex. Here, the general position problem and the mutual-visibility problem are investigated in double graphs and in Mycielskian graphs. Sharp general bounds are proved, in particular involving the total and the outer mutual-visibility number of base graphs. Several exact values are also determined, in particular the mutual-visibility number of the double graphs and of the Mycielskian of cycles.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005927\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005927","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

图中的一般位置问题是找到最大可能的顶点集合,其性质是其中没有三个顶点位于共同的最短路径上。图中的互见性问题是找到可以选择的最大顶点数,使得集合中的每对顶点之间都有一条最短路径,且集合中没有顶点作为内部顶点。这里研究的是双图和迈锡尔图中的一般位置问题和互见性问题。证明了尖锐的一般界限,特别是涉及基图的总互见数和外互见数。此外,还确定了几个精确值,特别是双图和循环 Mycielskian 的互见数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mutual-visibility and general position in double graphs and in Mycielskians
The general position problem in graphs is to find the largest possible set of vertices with the property that no three of them lie on a common shortest path. The mutual-visibility problem in graphs is to find the maximum number of vertices that can be selected such that every pair of vertices in the collection has a shortest path between them with no vertex from the collection as an internal vertex. Here, the general position problem and the mutual-visibility problem are investigated in double graphs and in Mycielskian graphs. Sharp general bounds are proved, in particular involving the total and the outer mutual-visibility number of base graphs. Several exact values are also determined, in particular the mutual-visibility number of the double graphs and of the Mycielskian of cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信