Feng Zhang , Taotao Chen , Hongyuan Zhu , Zhe Wang , Wanting Zhang , Wanning Dai , Daocai Chi , Guimin Xia
{"title":"生物炭减少了中国辽河下游平原干湿交替条件下水稻生态系统的氮损失","authors":"Feng Zhang , Taotao Chen , Hongyuan Zhu , Zhe Wang , Wanting Zhang , Wanning Dai , Daocai Chi , Guimin Xia","doi":"10.1016/j.agwat.2024.109108","DOIUrl":null,"url":null,"abstract":"<div><div>Biochar addition to soil is widely utilized to enhance carbon sequestration and reduce fertilizer N losses. However, little research has been studied on the effect of biochar on reactive gaseous N losses, N leaching and grain yield in paddy ecosystems under water stress, especially in the Lower Liaohe River Plain with a higher water percolation. Our experiment was carried out in 2020 and 2021 utilizing a split-plot design with continuously flooding irrigation and alternate wetting and drying irrigation as main plots and without biochar addition and with 20 t·ha<sup>−1</sup> rice husk-derived biochar addition as sub-plots. The results showed that alternate wetting and drying irrigation respectively, decreased N leaching and reactive N losses by 15.9 % and 11.3 % but also respectively, increased seasonal cumulative NH<sub>3</sub> volatilization and N<sub>2</sub>O emissions by 5.0 % and 210 % on average. Rice husk-derived biochar addition significantly mitigated seasonal cumulative NH<sub>3</sub> volatilization and N<sub>2</sub>O emissions by 8.8 % and 19.7 % in 2020, 20.7 % and 19.2 % in 2021, respectively, and decreased inorganic N leaching and reactive N losses by 8.3 % and 14.1 % in 2021. Biochar addition coupling with alternate wetting and drying respectively, mitigated cumulative NH<sub>3</sub> volatilization and N<sub>2</sub>O emissions by 7.3 % and 19.3 % in 2020, and, 22.7 % and 22.0 % in 2021 as compared to that without biochar. Biochar did not differ from without biochar in inorganic N leaching under alternate wetting and drying irrigation in both years but significantly reduced reactive N losses by 17.8 % in 2021, which efficiently inhibited the alternate wetting and drying induced negative effects on the increase in reactive N losses. Therefore, biochar addition to paddy ecosystems under alternate wetting and drying could realize sustainable utilization of water resources, increase soil N fixation, and mitigate N losses.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"305 ","pages":"Article 109108"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochar decreased N loss from paddy ecosystem under alternate wetting and drying in the Lower Liaohe River Plain, China\",\"authors\":\"Feng Zhang , Taotao Chen , Hongyuan Zhu , Zhe Wang , Wanting Zhang , Wanning Dai , Daocai Chi , Guimin Xia\",\"doi\":\"10.1016/j.agwat.2024.109108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biochar addition to soil is widely utilized to enhance carbon sequestration and reduce fertilizer N losses. However, little research has been studied on the effect of biochar on reactive gaseous N losses, N leaching and grain yield in paddy ecosystems under water stress, especially in the Lower Liaohe River Plain with a higher water percolation. Our experiment was carried out in 2020 and 2021 utilizing a split-plot design with continuously flooding irrigation and alternate wetting and drying irrigation as main plots and without biochar addition and with 20 t·ha<sup>−1</sup> rice husk-derived biochar addition as sub-plots. The results showed that alternate wetting and drying irrigation respectively, decreased N leaching and reactive N losses by 15.9 % and 11.3 % but also respectively, increased seasonal cumulative NH<sub>3</sub> volatilization and N<sub>2</sub>O emissions by 5.0 % and 210 % on average. Rice husk-derived biochar addition significantly mitigated seasonal cumulative NH<sub>3</sub> volatilization and N<sub>2</sub>O emissions by 8.8 % and 19.7 % in 2020, 20.7 % and 19.2 % in 2021, respectively, and decreased inorganic N leaching and reactive N losses by 8.3 % and 14.1 % in 2021. Biochar addition coupling with alternate wetting and drying respectively, mitigated cumulative NH<sub>3</sub> volatilization and N<sub>2</sub>O emissions by 7.3 % and 19.3 % in 2020, and, 22.7 % and 22.0 % in 2021 as compared to that without biochar. Biochar did not differ from without biochar in inorganic N leaching under alternate wetting and drying irrigation in both years but significantly reduced reactive N losses by 17.8 % in 2021, which efficiently inhibited the alternate wetting and drying induced negative effects on the increase in reactive N losses. Therefore, biochar addition to paddy ecosystems under alternate wetting and drying could realize sustainable utilization of water resources, increase soil N fixation, and mitigate N losses.</div></div>\",\"PeriodicalId\":7634,\"journal\":{\"name\":\"Agricultural Water Management\",\"volume\":\"305 \",\"pages\":\"Article 109108\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural Water Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037837742400444X\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037837742400444X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Biochar decreased N loss from paddy ecosystem under alternate wetting and drying in the Lower Liaohe River Plain, China
Biochar addition to soil is widely utilized to enhance carbon sequestration and reduce fertilizer N losses. However, little research has been studied on the effect of biochar on reactive gaseous N losses, N leaching and grain yield in paddy ecosystems under water stress, especially in the Lower Liaohe River Plain with a higher water percolation. Our experiment was carried out in 2020 and 2021 utilizing a split-plot design with continuously flooding irrigation and alternate wetting and drying irrigation as main plots and without biochar addition and with 20 t·ha−1 rice husk-derived biochar addition as sub-plots. The results showed that alternate wetting and drying irrigation respectively, decreased N leaching and reactive N losses by 15.9 % and 11.3 % but also respectively, increased seasonal cumulative NH3 volatilization and N2O emissions by 5.0 % and 210 % on average. Rice husk-derived biochar addition significantly mitigated seasonal cumulative NH3 volatilization and N2O emissions by 8.8 % and 19.7 % in 2020, 20.7 % and 19.2 % in 2021, respectively, and decreased inorganic N leaching and reactive N losses by 8.3 % and 14.1 % in 2021. Biochar addition coupling with alternate wetting and drying respectively, mitigated cumulative NH3 volatilization and N2O emissions by 7.3 % and 19.3 % in 2020, and, 22.7 % and 22.0 % in 2021 as compared to that without biochar. Biochar did not differ from without biochar in inorganic N leaching under alternate wetting and drying irrigation in both years but significantly reduced reactive N losses by 17.8 % in 2021, which efficiently inhibited the alternate wetting and drying induced negative effects on the increase in reactive N losses. Therefore, biochar addition to paddy ecosystems under alternate wetting and drying could realize sustainable utilization of water resources, increase soil N fixation, and mitigate N losses.
期刊介绍:
Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.