局部希尔伯特-施密特稳定性

Pub Date : 2024-10-10 DOI:10.1016/j.jalgebra.2024.08.042
Francesco Fournier-Facio , Maria Gerasimova , Pieter Spaas
{"title":"局部希尔伯特-施密特稳定性","authors":"Francesco Fournier-Facio ,&nbsp;Maria Gerasimova ,&nbsp;Pieter Spaas","doi":"10.1016/j.jalgebra.2024.08.042","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a notion of local Hilbert–Schmidt stability, motivated by the recent definition by Bradford of local permutation stability, and give examples of (non-residually finite) groups that are locally Hilbert–Schmidt stable but not Hilbert–Schmidt stable. For amenable groups, we provide a criterion for local Hilbert–Schmidt stability in terms of group characters, by analogy with the character criterion of Hadwin and Shulman for Hilbert–Schmidt stable amenable groups. Furthermore, we study the (very) flexible analogues of local Hilbert–Schmidt stability, and we prove several results analogous to the classical setting. Finally, we prove that infinite sofic, respectively hyperlinear, property (T) groups are never locally permutation stable, respectively locally Hilbert–Schmidt stable. This strengthens the result of Becker and Lubotzky for classical stability, and answers a question of Lubotzky.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Hilbert–Schmidt stability\",\"authors\":\"Francesco Fournier-Facio ,&nbsp;Maria Gerasimova ,&nbsp;Pieter Spaas\",\"doi\":\"10.1016/j.jalgebra.2024.08.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce a notion of local Hilbert–Schmidt stability, motivated by the recent definition by Bradford of local permutation stability, and give examples of (non-residually finite) groups that are locally Hilbert–Schmidt stable but not Hilbert–Schmidt stable. For amenable groups, we provide a criterion for local Hilbert–Schmidt stability in terms of group characters, by analogy with the character criterion of Hadwin and Shulman for Hilbert–Schmidt stable amenable groups. Furthermore, we study the (very) flexible analogues of local Hilbert–Schmidt stability, and we prove several results analogous to the classical setting. Finally, we prove that infinite sofic, respectively hyperlinear, property (T) groups are never locally permutation stable, respectively locally Hilbert–Schmidt stable. This strengthens the result of Becker and Lubotzky for classical stability, and answers a question of Lubotzky.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了局部希尔伯特-施密特稳定性的概念,其动机来自布拉德福德最近对局部置换稳定性的定义,并给出了局部希尔伯特-施密特稳定但非希尔伯特-施密特稳定的(非永久有限)群的例子。通过类比哈德温和舒尔曼对希尔伯特-施密特稳定可配位群的特征判据,我们用群特征为可配位群提供了一个局部希尔伯特-施密特稳定性判据。此外,我们还研究了局部希尔伯特-施密特稳定性的(非常)灵活的类比,并证明了几个与经典情形类似的结果。最后,我们证明了无限sofic(分别是超线性)性质(T)群从来不是局部置换稳定的,分别是局部希尔伯特-施密特稳定的。这加强了贝克尔和卢博茨基关于经典稳定性的结果,并回答了卢博茨基的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Local Hilbert–Schmidt stability
We introduce a notion of local Hilbert–Schmidt stability, motivated by the recent definition by Bradford of local permutation stability, and give examples of (non-residually finite) groups that are locally Hilbert–Schmidt stable but not Hilbert–Schmidt stable. For amenable groups, we provide a criterion for local Hilbert–Schmidt stability in terms of group characters, by analogy with the character criterion of Hadwin and Shulman for Hilbert–Schmidt stable amenable groups. Furthermore, we study the (very) flexible analogues of local Hilbert–Schmidt stability, and we prove several results analogous to the classical setting. Finally, we prove that infinite sofic, respectively hyperlinear, property (T) groups are never locally permutation stable, respectively locally Hilbert–Schmidt stable. This strengthens the result of Becker and Lubotzky for classical stability, and answers a question of Lubotzky.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信