具有速度超临界耗散的二维布森斯克方程的稳定性和大时间行为

IF 2.4 2区 数学 Q1 MATHEMATICS
Baoquan Yuan, Changhao Li
{"title":"具有速度超临界耗散的二维布森斯克方程的稳定性和大时间行为","authors":"Baoquan Yuan,&nbsp;Changhao Li","doi":"10.1016/j.jde.2024.10.014","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the 2D Boussinesq equations with velocity supercritical <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>(</mo><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn><mo>)</mo></math></span> dissipation and temperature damping near the hydrostatic equilibrium. We are able to establish the global stability and the large time behavior of the solution. By introducing a diagonalization process to eliminate the linear terms, the temporal decay rate of the global solution is obtained. Furthermore, when <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span>, the velocity dissipation term becomes the velocity damping term, and the solution has an exponential decay.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 927-952"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and large time behavior of the 2D Boussinesq equations with velocity supercritical dissipation\",\"authors\":\"Baoquan Yuan,&nbsp;Changhao Li\",\"doi\":\"10.1016/j.jde.2024.10.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the 2D Boussinesq equations with velocity supercritical <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>(</mo><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn><mo>)</mo></math></span> dissipation and temperature damping near the hydrostatic equilibrium. We are able to establish the global stability and the large time behavior of the solution. By introducing a diagonalization process to eliminate the linear terms, the temporal decay rate of the global solution is obtained. Furthermore, when <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span>, the velocity dissipation term becomes the velocity damping term, and the solution has an exponential decay.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 927-952\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006648\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006648","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在静水平衡附近具有速度超临界Λα(0<α<1)耗散和温度阻尼的二维布辛斯方程。我们能够建立解的全局稳定性和大时间行为。通过引入对角化过程消除线性项,我们得到了全局解的时间衰减率。此外,当 α=0 时,速度耗散项变成了速度阻尼项,解具有指数衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and large time behavior of the 2D Boussinesq equations with velocity supercritical dissipation
This paper studies the 2D Boussinesq equations with velocity supercritical Λα(0<α<1) dissipation and temperature damping near the hydrostatic equilibrium. We are able to establish the global stability and the large time behavior of the solution. By introducing a diagonalization process to eliminate the linear terms, the temporal decay rate of the global solution is obtained. Furthermore, when α=0, the velocity dissipation term becomes the velocity damping term, and the solution has an exponential decay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信