平均场极限下 L2(Rd) 中 N 个相互作用随机粒子系统的小质量极限

IF 2.4 2区 数学 Q1 MATHEMATICS
Xueru Liu, Wei Wang
{"title":"平均场极限下 L2(Rd) 中 N 个相互作用随机粒子系统的小质量极限","authors":"Xueru Liu,&nbsp;Wei Wang","doi":"10.1016/j.jde.2024.10.015","DOIUrl":null,"url":null,"abstract":"<div><div>An <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>-valued stochastic <em>N</em>-interacting particles system with small mass is investigated. Mean field limit and the propagation of chaos are derived. Moreover the small mass limit of the solution is also built, which can be seen as a Smoluchowski–Kramers approximation on unbounded domain. Here a key step is the asymptotic compactness of the distribution of the solution, which is derived via a splitting technique of the domain <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and some estimation of the solution for the mean field limit equation. We also show that the limits <span><math><mi>N</mi><mo>→</mo><mo>∞</mo></math></span> and <span><math><mi>ϵ</mi><mo>→</mo><mn>0</mn></math></span> commute.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 897-926"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small mass limit for stochastic N-interacting particles system in L2(Rd) in mean field limit\",\"authors\":\"Xueru Liu,&nbsp;Wei Wang\",\"doi\":\"10.1016/j.jde.2024.10.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>-valued stochastic <em>N</em>-interacting particles system with small mass is investigated. Mean field limit and the propagation of chaos are derived. Moreover the small mass limit of the solution is also built, which can be seen as a Smoluchowski–Kramers approximation on unbounded domain. Here a key step is the asymptotic compactness of the distribution of the solution, which is derived via a splitting technique of the domain <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and some estimation of the solution for the mean field limit equation. We also show that the limits <span><math><mi>N</mi><mo>→</mo><mo>∞</mo></math></span> and <span><math><mi>ϵ</mi><mo>→</mo><mn>0</mn></math></span> commute.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 897-926\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006661\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006661","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了一个具有小质量的 L2(Rd)-valued 随机 N-interacting 粒子系统。推导了平均场极限和混沌传播。此外,还建立了解的小质量极限,这可以看作是无界域上的 Smoluchowskii-Kramers 近似。这里的一个关键步骤是解的分布的渐近紧凑性,它是通过域 Rd 的分裂技术和对均值场极限方程解的一些估计得出的。我们还证明了 N→∞ 和 ϵ→0 的极限是相通的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small mass limit for stochastic N-interacting particles system in L2(Rd) in mean field limit
An L2(Rd)-valued stochastic N-interacting particles system with small mass is investigated. Mean field limit and the propagation of chaos are derived. Moreover the small mass limit of the solution is also built, which can be seen as a Smoluchowski–Kramers approximation on unbounded domain. Here a key step is the asymptotic compactness of the distribution of the solution, which is derived via a splitting technique of the domain Rd and some estimation of the solution for the mean field limit equation. We also show that the limits N and ϵ0 commute.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信