Mingxiu Chong , Zhongrong Geng , Guangan Zhang , Xia Li , Xueqian Cao
{"title":"不同结构的类金刚石碳膜在循环冲击条件下的接触疲劳特性","authors":"Mingxiu Chong , Zhongrong Geng , Guangan Zhang , Xia Li , Xueqian Cao","doi":"10.1016/j.ijrmhm.2024.106921","DOIUrl":null,"url":null,"abstract":"<div><div>Repeated contact with high loads can cause damage to the surface of the DLC films and thus affect their fatigue strength. This study systematically investigates the contact fatigue damage of the DLC films with different carbon structures (a-C, a-C:H, and ta-C) by macro-scale cyclic impact tests with alternating loads. The results reveal that the a-C film possesses significantly superior contact fatigue property compared to the a-C:H and ta-C films under high load. The graphitization transformation of the a-C and a-C:H films lead to a decrease in hardness and elastic modulus. The work-hardening of the ta-C films results in an increase in hardness and elastic modulus. The findings indicate that under cyclic load impact conditions, films need a combination of load support and fatigue resistance to achieve optimum lifetime, and solely increasing film hardness could be accompanied by brittle fracture and higher wear.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"125 ","pages":"Article 106921"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact fatigue property of diamond-like carbon films with different structure in cyclic impact conditions\",\"authors\":\"Mingxiu Chong , Zhongrong Geng , Guangan Zhang , Xia Li , Xueqian Cao\",\"doi\":\"10.1016/j.ijrmhm.2024.106921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Repeated contact with high loads can cause damage to the surface of the DLC films and thus affect their fatigue strength. This study systematically investigates the contact fatigue damage of the DLC films with different carbon structures (a-C, a-C:H, and ta-C) by macro-scale cyclic impact tests with alternating loads. The results reveal that the a-C film possesses significantly superior contact fatigue property compared to the a-C:H and ta-C films under high load. The graphitization transformation of the a-C and a-C:H films lead to a decrease in hardness and elastic modulus. The work-hardening of the ta-C films results in an increase in hardness and elastic modulus. The findings indicate that under cyclic load impact conditions, films need a combination of load support and fatigue resistance to achieve optimum lifetime, and solely increasing film hardness could be accompanied by brittle fracture and higher wear.</div></div>\",\"PeriodicalId\":14216,\"journal\":{\"name\":\"International Journal of Refractory Metals & Hard Materials\",\"volume\":\"125 \",\"pages\":\"Article 106921\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refractory Metals & Hard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026343682400369X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026343682400369X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Contact fatigue property of diamond-like carbon films with different structure in cyclic impact conditions
Repeated contact with high loads can cause damage to the surface of the DLC films and thus affect their fatigue strength. This study systematically investigates the contact fatigue damage of the DLC films with different carbon structures (a-C, a-C:H, and ta-C) by macro-scale cyclic impact tests with alternating loads. The results reveal that the a-C film possesses significantly superior contact fatigue property compared to the a-C:H and ta-C films under high load. The graphitization transformation of the a-C and a-C:H films lead to a decrease in hardness and elastic modulus. The work-hardening of the ta-C films results in an increase in hardness and elastic modulus. The findings indicate that under cyclic load impact conditions, films need a combination of load support and fatigue resistance to achieve optimum lifetime, and solely increasing film hardness could be accompanied by brittle fracture and higher wear.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.