论紧凑黎曼曲面上最大的纯非自由共形作用及其渐近特性

Pub Date : 2024-10-10 DOI:10.1016/j.jalgebra.2024.09.012
C. Bagiński , G. Gromadzki , R.A. Hidalgo
{"title":"论紧凑黎曼曲面上最大的纯非自由共形作用及其渐近特性","authors":"C. Bagiński ,&nbsp;G. Gromadzki ,&nbsp;R.A. Hidalgo","doi":"10.1016/j.jalgebra.2024.09.012","DOIUrl":null,"url":null,"abstract":"<div><div>A continuous action of a finite group <em>G</em> on a closed orientable surface <em>X</em> is said to be gpnf (Gilman purely non-free) if every element of <em>G</em> has a fixed point on <em>X</em>. We prove that the biggest order <span><math><mi>μ</mi><mo>(</mo><mi>g</mi><mo>)</mo></math></span>, of a gpnf-action on a surface of even genus <span><math><mi>g</mi><mo>≥</mo><mn>2</mn></math></span>, is bounded below by 8<em>g</em> and that this bound is sharp for infinitely many even <em>g</em> as well. This provides, for even genera, a gpnf-action analog of the celebrated Accola-Maclachlan bound <span><math><mn>8</mn><mi>g</mi><mo>+</mo><mn>8</mn></math></span> for arbitrary finite continuous actions. We also describe the asymptotic behavior of <em>μ</em>. We define <span><math><mi>M</mi></math></span> as the set of values of the function <span><math><mover><mrow><mi>μ</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mi>g</mi><mo>)</mo><mo>=</mo><mi>μ</mi><mo>(</mo><mi>g</mi><mo>)</mo><mo>/</mo><mo>(</mo><mi>g</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> and its subsets <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>−</mo></mrow></msub></math></span> corresponding to even and odd genera <em>g</em>. We show that the set <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, of accumulation points of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>, consists of a single number 8. If <em>g</em> is odd, then we prove that <span><math><mn>4</mn><mi>g</mi><mo>≤</mo><mi>μ</mi><mo>(</mo><mi>g</mi><mo>)</mo><mo>&lt;</mo><mn>8</mn><mi>g</mi></math></span>. We conjecture that this lower bound is sharp for infinitely many odd <em>g</em>. Finally, we prove that this conjecture implies that 4 is the only element of <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mo>−</mo></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, leading to <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>=</mo><mo>{</mo><mn>4</mn><mo>,</mo><mn>8</mn><mo>}</mo></math></span>.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the biggest purely non-free conformal actions on compact Riemann surfaces and their asymptotic properties\",\"authors\":\"C. Bagiński ,&nbsp;G. Gromadzki ,&nbsp;R.A. Hidalgo\",\"doi\":\"10.1016/j.jalgebra.2024.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A continuous action of a finite group <em>G</em> on a closed orientable surface <em>X</em> is said to be gpnf (Gilman purely non-free) if every element of <em>G</em> has a fixed point on <em>X</em>. We prove that the biggest order <span><math><mi>μ</mi><mo>(</mo><mi>g</mi><mo>)</mo></math></span>, of a gpnf-action on a surface of even genus <span><math><mi>g</mi><mo>≥</mo><mn>2</mn></math></span>, is bounded below by 8<em>g</em> and that this bound is sharp for infinitely many even <em>g</em> as well. This provides, for even genera, a gpnf-action analog of the celebrated Accola-Maclachlan bound <span><math><mn>8</mn><mi>g</mi><mo>+</mo><mn>8</mn></math></span> for arbitrary finite continuous actions. We also describe the asymptotic behavior of <em>μ</em>. We define <span><math><mi>M</mi></math></span> as the set of values of the function <span><math><mover><mrow><mi>μ</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mi>g</mi><mo>)</mo><mo>=</mo><mi>μ</mi><mo>(</mo><mi>g</mi><mo>)</mo><mo>/</mo><mo>(</mo><mi>g</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> and its subsets <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>−</mo></mrow></msub></math></span> corresponding to even and odd genera <em>g</em>. We show that the set <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, of accumulation points of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>, consists of a single number 8. If <em>g</em> is odd, then we prove that <span><math><mn>4</mn><mi>g</mi><mo>≤</mo><mi>μ</mi><mo>(</mo><mi>g</mi><mo>)</mo><mo>&lt;</mo><mn>8</mn><mi>g</mi></math></span>. We conjecture that this lower bound is sharp for infinitely many odd <em>g</em>. Finally, we prove that this conjecture implies that 4 is the only element of <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mo>−</mo></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, leading to <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>=</mo><mo>{</mo><mn>4</mn><mo>,</mo><mn>8</mn><mo>}</mo></math></span>.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果 G 的每个元素在 X 上都有一个定点,那么有限群 G 在封闭可定向曲面 X 上的连续作用被称为 gpnf(吉尔曼纯非自由)作用。我们证明,偶数属 g≥2 的曲面上的 gpnf 作用的最大阶 μ(g),其下限为 8g,并且这个下限对于无穷多个偶数属 g 也是尖锐的。这就为偶数属提供了著名的任意有限连续作用的阿克拉-麦克拉克伦界 8g+8 的 gpnf 作用类似物。我们还描述了 μ 的渐近行为。我们将 M 定义为函数 μ˜(g)=μ(g)/(g+1)的值集及其对应于偶数和奇数属 g 的子集 M+ 和 M-。如果 g 是奇数,那么我们证明 4g≤μ(g)<8g。最后,我们证明这一猜想意味着 4 是 M-d 的唯一元素,从而得出 Md={4,8}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the biggest purely non-free conformal actions on compact Riemann surfaces and their asymptotic properties
A continuous action of a finite group G on a closed orientable surface X is said to be gpnf (Gilman purely non-free) if every element of G has a fixed point on X. We prove that the biggest order μ(g), of a gpnf-action on a surface of even genus g2, is bounded below by 8g and that this bound is sharp for infinitely many even g as well. This provides, for even genera, a gpnf-action analog of the celebrated Accola-Maclachlan bound 8g+8 for arbitrary finite continuous actions. We also describe the asymptotic behavior of μ. We define M as the set of values of the function μ˜(g)=μ(g)/(g+1) and its subsets M+ and M corresponding to even and odd genera g. We show that the set M+d, of accumulation points of M+, consists of a single number 8. If g is odd, then we prove that 4gμ(g)<8g. We conjecture that this lower bound is sharp for infinitely many odd g. Finally, we prove that this conjecture implies that 4 is the only element of Md, leading to Md={4,8}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信