广义莫德尔曲线雅各布的二次扭曲秩

Pub Date : 2024-10-10 DOI:10.1016/j.jalgebra.2024.08.041
Tomasz Jędrzejak
{"title":"广义莫德尔曲线雅各布的二次扭曲秩","authors":"Tomasz Jędrzejak","doi":"10.1016/j.jalgebra.2024.08.041","DOIUrl":null,"url":null,"abstract":"<div><div>Consider a two-parameter family of hyperelliptic curves <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>−</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> defined over <span><math><mi>Q</mi></math></span>, and their Jacobians <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> where <em>q</em> is an odd prime and without loss of generality <em>b</em> is a non-zero squarefree integer. The curve <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> is a quadratic twist by <em>b</em> of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span> (a generalized Mordell curve of degree <em>q</em>). First, we obtain a few upper bounds for the ranks e.g., if the class number of <span><math><mi>Q</mi><mrow><mo>(</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow></math></span> is odd, <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mrow><mo>(</mo><mi>mod</mi><mspace></mspace><mn>4</mn><mo>)</mo></mrow></math></span> and any prime divisor of <span><math><mspace></mspace><mn>2</mn><mi>b</mi></math></span> not equal to <em>q</em> is a primitive root modulo <em>q</em> then <span><math><mi>rank</mi><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mn>2</mn></math></span>. Then we focus on <span><math><mi>q</mi><mo>=</mo><mn>5</mn></math></span> and get the best possible bound (by 1) or even the exact value of rank (0). In particular, we found infinitely many <em>b</em> with any number of prime factors such that <span><math><mi>rank</mi><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mn>5</mn><mo>,</mo><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></math></span>. We deduce as conclusions the complete list (or the bounds for the number) of rational points on <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn><mo>,</mo><mi>b</mi></mrow></msub></math></span> in such cases. Finally, we found for any given <em>q</em> infinitely many non-isomorphic curves <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> such that <span><math><mi>rank</mi><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>≥</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ranks of quadratic twists of Jacobians of generalized Mordell curves\",\"authors\":\"Tomasz Jędrzejak\",\"doi\":\"10.1016/j.jalgebra.2024.08.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Consider a two-parameter family of hyperelliptic curves <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>−</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> defined over <span><math><mi>Q</mi></math></span>, and their Jacobians <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> where <em>q</em> is an odd prime and without loss of generality <em>b</em> is a non-zero squarefree integer. The curve <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> is a quadratic twist by <em>b</em> of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span> (a generalized Mordell curve of degree <em>q</em>). First, we obtain a few upper bounds for the ranks e.g., if the class number of <span><math><mi>Q</mi><mrow><mo>(</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow></math></span> is odd, <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mrow><mo>(</mo><mi>mod</mi><mspace></mspace><mn>4</mn><mo>)</mo></mrow></math></span> and any prime divisor of <span><math><mspace></mspace><mn>2</mn><mi>b</mi></math></span> not equal to <em>q</em> is a primitive root modulo <em>q</em> then <span><math><mi>rank</mi><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mn>2</mn></math></span>. Then we focus on <span><math><mi>q</mi><mo>=</mo><mn>5</mn></math></span> and get the best possible bound (by 1) or even the exact value of rank (0). In particular, we found infinitely many <em>b</em> with any number of prime factors such that <span><math><mi>rank</mi><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mn>5</mn><mo>,</mo><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></math></span>. We deduce as conclusions the complete list (or the bounds for the number) of rational points on <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn><mo>,</mo><mi>b</mi></mrow></msub></math></span> in such cases. Finally, we found for any given <em>q</em> infinitely many non-isomorphic curves <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> such that <span><math><mi>rank</mi><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>≥</mo><mn>1</mn></math></span>.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑定义在 Q 上的双参数超椭圆曲线族 Cq,b:y2=xq-bq,以及它们的雅各布数 Jq,b,其中 q 是奇素数,在不失一般性的前提下,b 是非零的无平方整数。曲线 Cq,b 是 Cq,1 的 b 二次扭曲(q 度的广义莫德尔曲线)。首先,我们会得到一些秩的上限,例如,如果 Q(ζq) 的类数是奇数,q≡1(mod4),并且 2b 中任何不等于 q 的素除都是 modulo q 的基元根,那么 rankJq,b(Q)≤(q-1)/2。然后,我们把重点放在 q=5 上,得到了可能的最佳约束(1),甚至是秩的精确值(0)。在这种情况下,我们推导出了 C5,b 上有理点的完整列表(或数量的边界)。最后,我们发现对于任意给定的 q,有无限多条非同构曲线 Cq,b,使得 rankJq,b(Q)≥1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Ranks of quadratic twists of Jacobians of generalized Mordell curves
Consider a two-parameter family of hyperelliptic curves Cq,b:y2=xqbq defined over Q, and their Jacobians Jq,b where q is an odd prime and without loss of generality b is a non-zero squarefree integer. The curve Cq,b is a quadratic twist by b of Cq,1 (a generalized Mordell curve of degree q). First, we obtain a few upper bounds for the ranks e.g., if the class number of Q(ζq) is odd, q1(mod4) and any prime divisor of 2b not equal to q is a primitive root modulo q then rankJq,b(Q)(q1)/2. Then we focus on q=5 and get the best possible bound (by 1) or even the exact value of rank (0). In particular, we found infinitely many b with any number of prime factors such that rankJ5,b(Q)=0. We deduce as conclusions the complete list (or the bounds for the number) of rational points on C5,b in such cases. Finally, we found for any given q infinitely many non-isomorphic curves Cq,b such that rankJq,b(Q)1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信