{"title":"广义莫德尔曲线雅各布的二次扭曲秩","authors":"Tomasz Jędrzejak","doi":"10.1016/j.jalgebra.2024.08.041","DOIUrl":null,"url":null,"abstract":"<div><div>Consider a two-parameter family of hyperelliptic curves <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>−</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> defined over <span><math><mi>Q</mi></math></span>, and their Jacobians <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> where <em>q</em> is an odd prime and without loss of generality <em>b</em> is a non-zero squarefree integer. The curve <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> is a quadratic twist by <em>b</em> of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span> (a generalized Mordell curve of degree <em>q</em>). First, we obtain a few upper bounds for the ranks e.g., if the class number of <span><math><mi>Q</mi><mrow><mo>(</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow></math></span> is odd, <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mrow><mo>(</mo><mi>mod</mi><mspace></mspace><mn>4</mn><mo>)</mo></mrow></math></span> and any prime divisor of <span><math><mspace></mspace><mn>2</mn><mi>b</mi></math></span> not equal to <em>q</em> is a primitive root modulo <em>q</em> then <span><math><mi>rank</mi><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mn>2</mn></math></span>. Then we focus on <span><math><mi>q</mi><mo>=</mo><mn>5</mn></math></span> and get the best possible bound (by 1) or even the exact value of rank (0). In particular, we found infinitely many <em>b</em> with any number of prime factors such that <span><math><mi>rank</mi><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mn>5</mn><mo>,</mo><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></math></span>. We deduce as conclusions the complete list (or the bounds for the number) of rational points on <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn><mo>,</mo><mi>b</mi></mrow></msub></math></span> in such cases. Finally, we found for any given <em>q</em> infinitely many non-isomorphic curves <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> such that <span><math><mi>rank</mi><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>≥</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"663 ","pages":"Pages 565-588"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ranks of quadratic twists of Jacobians of generalized Mordell curves\",\"authors\":\"Tomasz Jędrzejak\",\"doi\":\"10.1016/j.jalgebra.2024.08.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Consider a two-parameter family of hyperelliptic curves <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>−</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> defined over <span><math><mi>Q</mi></math></span>, and their Jacobians <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> where <em>q</em> is an odd prime and without loss of generality <em>b</em> is a non-zero squarefree integer. The curve <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> is a quadratic twist by <em>b</em> of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span> (a generalized Mordell curve of degree <em>q</em>). First, we obtain a few upper bounds for the ranks e.g., if the class number of <span><math><mi>Q</mi><mrow><mo>(</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow></math></span> is odd, <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mrow><mo>(</mo><mi>mod</mi><mspace></mspace><mn>4</mn><mo>)</mo></mrow></math></span> and any prime divisor of <span><math><mspace></mspace><mn>2</mn><mi>b</mi></math></span> not equal to <em>q</em> is a primitive root modulo <em>q</em> then <span><math><mi>rank</mi><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mn>2</mn></math></span>. Then we focus on <span><math><mi>q</mi><mo>=</mo><mn>5</mn></math></span> and get the best possible bound (by 1) or even the exact value of rank (0). In particular, we found infinitely many <em>b</em> with any number of prime factors such that <span><math><mi>rank</mi><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mn>5</mn><mo>,</mo><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></math></span>. We deduce as conclusions the complete list (or the bounds for the number) of rational points on <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn><mo>,</mo><mi>b</mi></mrow></msub></math></span> in such cases. Finally, we found for any given <em>q</em> infinitely many non-isomorphic curves <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> such that <span><math><mi>rank</mi><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>≥</mo><mn>1</mn></math></span>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"663 \",\"pages\":\"Pages 565-588\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005131\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005131","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Ranks of quadratic twists of Jacobians of generalized Mordell curves
Consider a two-parameter family of hyperelliptic curves defined over , and their Jacobians where q is an odd prime and without loss of generality b is a non-zero squarefree integer. The curve is a quadratic twist by b of (a generalized Mordell curve of degree q). First, we obtain a few upper bounds for the ranks e.g., if the class number of is odd, and any prime divisor of not equal to q is a primitive root modulo q then . Then we focus on and get the best possible bound (by 1) or even the exact value of rank (0). In particular, we found infinitely many b with any number of prime factors such that . We deduce as conclusions the complete list (or the bounds for the number) of rational points on in such cases. Finally, we found for any given q infinitely many non-isomorphic curves such that .
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.