广义莫德尔曲线雅各布的二次扭曲秩

IF 0.8 2区 数学 Q2 MATHEMATICS
Tomasz Jędrzejak
{"title":"广义莫德尔曲线雅各布的二次扭曲秩","authors":"Tomasz Jędrzejak","doi":"10.1016/j.jalgebra.2024.08.041","DOIUrl":null,"url":null,"abstract":"<div><div>Consider a two-parameter family of hyperelliptic curves <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>−</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> defined over <span><math><mi>Q</mi></math></span>, and their Jacobians <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> where <em>q</em> is an odd prime and without loss of generality <em>b</em> is a non-zero squarefree integer. The curve <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> is a quadratic twist by <em>b</em> of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span> (a generalized Mordell curve of degree <em>q</em>). First, we obtain a few upper bounds for the ranks e.g., if the class number of <span><math><mi>Q</mi><mrow><mo>(</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow></math></span> is odd, <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mrow><mo>(</mo><mi>mod</mi><mspace></mspace><mn>4</mn><mo>)</mo></mrow></math></span> and any prime divisor of <span><math><mspace></mspace><mn>2</mn><mi>b</mi></math></span> not equal to <em>q</em> is a primitive root modulo <em>q</em> then <span><math><mi>rank</mi><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mn>2</mn></math></span>. Then we focus on <span><math><mi>q</mi><mo>=</mo><mn>5</mn></math></span> and get the best possible bound (by 1) or even the exact value of rank (0). In particular, we found infinitely many <em>b</em> with any number of prime factors such that <span><math><mi>rank</mi><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mn>5</mn><mo>,</mo><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></math></span>. We deduce as conclusions the complete list (or the bounds for the number) of rational points on <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn><mo>,</mo><mi>b</mi></mrow></msub></math></span> in such cases. Finally, we found for any given <em>q</em> infinitely many non-isomorphic curves <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> such that <span><math><mi>rank</mi><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>≥</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"663 ","pages":"Pages 565-588"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ranks of quadratic twists of Jacobians of generalized Mordell curves\",\"authors\":\"Tomasz Jędrzejak\",\"doi\":\"10.1016/j.jalgebra.2024.08.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Consider a two-parameter family of hyperelliptic curves <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>−</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> defined over <span><math><mi>Q</mi></math></span>, and their Jacobians <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> where <em>q</em> is an odd prime and without loss of generality <em>b</em> is a non-zero squarefree integer. The curve <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> is a quadratic twist by <em>b</em> of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span> (a generalized Mordell curve of degree <em>q</em>). First, we obtain a few upper bounds for the ranks e.g., if the class number of <span><math><mi>Q</mi><mrow><mo>(</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow></math></span> is odd, <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mrow><mo>(</mo><mi>mod</mi><mspace></mspace><mn>4</mn><mo>)</mo></mrow></math></span> and any prime divisor of <span><math><mspace></mspace><mn>2</mn><mi>b</mi></math></span> not equal to <em>q</em> is a primitive root modulo <em>q</em> then <span><math><mi>rank</mi><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mn>2</mn></math></span>. Then we focus on <span><math><mi>q</mi><mo>=</mo><mn>5</mn></math></span> and get the best possible bound (by 1) or even the exact value of rank (0). In particular, we found infinitely many <em>b</em> with any number of prime factors such that <span><math><mi>rank</mi><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mn>5</mn><mo>,</mo><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></math></span>. We deduce as conclusions the complete list (or the bounds for the number) of rational points on <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn><mo>,</mo><mi>b</mi></mrow></msub></math></span> in such cases. Finally, we found for any given <em>q</em> infinitely many non-isomorphic curves <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> such that <span><math><mi>rank</mi><mspace></mspace><msub><mrow><mi>J</mi></mrow><mrow><mi>q</mi><mo>,</mo><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>≥</mo><mn>1</mn></math></span>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"663 \",\"pages\":\"Pages 565-588\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005131\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005131","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑定义在 Q 上的双参数超椭圆曲线族 Cq,b:y2=xq-bq,以及它们的雅各布数 Jq,b,其中 q 是奇素数,在不失一般性的前提下,b 是非零的无平方整数。曲线 Cq,b 是 Cq,1 的 b 二次扭曲(q 度的广义莫德尔曲线)。首先,我们会得到一些秩的上限,例如,如果 Q(ζq) 的类数是奇数,q≡1(mod4),并且 2b 中任何不等于 q 的素除都是 modulo q 的基元根,那么 rankJq,b(Q)≤(q-1)/2。然后,我们把重点放在 q=5 上,得到了可能的最佳约束(1),甚至是秩的精确值(0)。在这种情况下,我们推导出了 C5,b 上有理点的完整列表(或数量的边界)。最后,我们发现对于任意给定的 q,有无限多条非同构曲线 Cq,b,使得 rankJq,b(Q)≥1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ranks of quadratic twists of Jacobians of generalized Mordell curves
Consider a two-parameter family of hyperelliptic curves Cq,b:y2=xqbq defined over Q, and their Jacobians Jq,b where q is an odd prime and without loss of generality b is a non-zero squarefree integer. The curve Cq,b is a quadratic twist by b of Cq,1 (a generalized Mordell curve of degree q). First, we obtain a few upper bounds for the ranks e.g., if the class number of Q(ζq) is odd, q1(mod4) and any prime divisor of 2b not equal to q is a primitive root modulo q then rankJq,b(Q)(q1)/2. Then we focus on q=5 and get the best possible bound (by 1) or even the exact value of rank (0). In particular, we found infinitely many b with any number of prime factors such that rankJ5,b(Q)=0. We deduce as conclusions the complete list (or the bounds for the number) of rational points on C5,b in such cases. Finally, we found for any given q infinitely many non-isomorphic curves Cq,b such that rankJq,b(Q)1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信