左旋亮氨酸含量对喷雾干燥蛋白质干粉吸入剂(DPI)气溶胶稳定性的影响

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY
{"title":"左旋亮氨酸含量对喷雾干燥蛋白质干粉吸入剂(DPI)气溶胶稳定性的影响","authors":"","doi":"10.1016/j.ijpharm.2024.124822","DOIUrl":null,"url":null,"abstract":"<div><div>Inhalable formulations of medicines intended to act locally in the lung are therapeutically effective at lower doses with targeted delivery, compared to parenteral or oral administration. Meanwhile, different APIs, including biologics, have proven to be challenging regarding formulation and final bioavailability. This study focuses on the production, improved stability performance, and delivery of spray-dried, inhalable protein powders to the lungs. By spray-drying 11 aqueous formulations of proteinX with varying L-leucine content and by employing a Design of Experiment (DoE), two formulations have been selected for stability studies based on the highest fine particle fraction (FPF), highest monomer content, and lowest particle size. We found that 5 %w/w L-leucine (based on protein content) resulted in similar or higher FPF at 2–8 °C and 25 °C/60 %RH (67.12 % and 48.50 %) stored for six months than 10 %w/w L-leucine (68.49 % and 35.04 %). This indicates that less leucine may be sufficient to produce stable, spray-dried inhalable particles with an improved FPF, and by doubling the leucine content, the aerosolization stability can deteriorate. We have discussed the postulated hypothesis underlying the observed stability behavior based on solid-state and morphological analysis. Our results suggest that spray-dried proteinX-leu-powders can be delivered to the lung at a lower dose than for intravenous administration.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of L-leucine content on the aerosolization stability of spray-dried protein dry powder inhalation (DPI)\",\"authors\":\"\",\"doi\":\"10.1016/j.ijpharm.2024.124822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inhalable formulations of medicines intended to act locally in the lung are therapeutically effective at lower doses with targeted delivery, compared to parenteral or oral administration. Meanwhile, different APIs, including biologics, have proven to be challenging regarding formulation and final bioavailability. This study focuses on the production, improved stability performance, and delivery of spray-dried, inhalable protein powders to the lungs. By spray-drying 11 aqueous formulations of proteinX with varying L-leucine content and by employing a Design of Experiment (DoE), two formulations have been selected for stability studies based on the highest fine particle fraction (FPF), highest monomer content, and lowest particle size. We found that 5 %w/w L-leucine (based on protein content) resulted in similar or higher FPF at 2–8 °C and 25 °C/60 %RH (67.12 % and 48.50 %) stored for six months than 10 %w/w L-leucine (68.49 % and 35.04 %). This indicates that less leucine may be sufficient to produce stable, spray-dried inhalable particles with an improved FPF, and by doubling the leucine content, the aerosolization stability can deteriorate. We have discussed the postulated hypothesis underlying the observed stability behavior based on solid-state and morphological analysis. Our results suggest that spray-dried proteinX-leu-powders can be delivered to the lung at a lower dose than for intravenous administration.</div></div>\",\"PeriodicalId\":14187,\"journal\":{\"name\":\"International Journal of Pharmaceutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378517324010561\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517324010561","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

与肠外或口服给药相比,吸入式药物制剂能以较低的剂量在肺部局部发挥作用,具有靶向给药的治疗效果。与此同时,不同的原料药(包括生物制剂)在配方和最终生物利用度方面已被证明具有挑战性。本研究的重点是喷雾干燥可吸入蛋白粉的生产、稳定性能的改善以及向肺部的给药。通过喷雾干燥 11 种左旋亮氨酸含量不同的蛋白质 X 水溶液配方,并采用实验设计法(DoE),根据最高的细颗粒分数(FPF)、最高的单体含量和最低的粒度,选择了两种配方进行稳定性研究。我们发现,与 10 %w/w L-亮氨酸(68.49 % 和 35.04 %)相比,5 %w/w L-亮氨酸(基于蛋白质含量)在 2-8 °C 和 25 °C/60 %RH 下储存 6 个月的 FPF(67.12 % 和 48.50 %)相似或更高。这表明,较少的亮氨酸可能就足以生产出稳定的喷雾干燥可吸入颗粒,并改善 FPF,而亮氨酸含量增加一倍,气溶胶稳定性就会降低。我们讨论了基于固态和形态分析观察到的稳定性行为的假设。我们的研究结果表明,与静脉注射相比,喷雾干燥的蛋白质 X-leu 粉末能以更低的剂量输送到肺部。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of L-leucine content on the aerosolization stability of spray-dried protein dry powder inhalation (DPI)
Inhalable formulations of medicines intended to act locally in the lung are therapeutically effective at lower doses with targeted delivery, compared to parenteral or oral administration. Meanwhile, different APIs, including biologics, have proven to be challenging regarding formulation and final bioavailability. This study focuses on the production, improved stability performance, and delivery of spray-dried, inhalable protein powders to the lungs. By spray-drying 11 aqueous formulations of proteinX with varying L-leucine content and by employing a Design of Experiment (DoE), two formulations have been selected for stability studies based on the highest fine particle fraction (FPF), highest monomer content, and lowest particle size. We found that 5 %w/w L-leucine (based on protein content) resulted in similar or higher FPF at 2–8 °C and 25 °C/60 %RH (67.12 % and 48.50 %) stored for six months than 10 %w/w L-leucine (68.49 % and 35.04 %). This indicates that less leucine may be sufficient to produce stable, spray-dried inhalable particles with an improved FPF, and by doubling the leucine content, the aerosolization stability can deteriorate. We have discussed the postulated hypothesis underlying the observed stability behavior based on solid-state and morphological analysis. Our results suggest that spray-dried proteinX-leu-powders can be delivered to the lung at a lower dose than for intravenous administration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信