{"title":"韦林德范畴中一般线性群方案的斯坦伯格张量积定理","authors":"Arun S. Kannan","doi":"10.1016/j.jalgebra.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>The Steinberg tensor product theorem is a fundamental result in the modular representation theory of reductive algebraic groups. It describes any finite-dimensional simple module of highest weight <em>λ</em> over such a group as the tensor product of Frobenius twists of simple modules with highest weights the weights appearing in a <em>p</em>-adic decomposition of <em>λ</em>, thereby reducing the character problem to a finite collection of weights. In recent years this theorem has been extended to various quasi-reductive supergroup schemes. In this paper, we prove the analogous result for the general linear group scheme <span><math><mi>G</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> for any object <em>X</em> in the Verlinde category <span><math><msub><mrow><mi>Ver</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"663 ","pages":"Pages 815-837"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Steinberg tensor product theorem for general linear group schemes in the Verlinde category\",\"authors\":\"Arun S. Kannan\",\"doi\":\"10.1016/j.jalgebra.2024.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Steinberg tensor product theorem is a fundamental result in the modular representation theory of reductive algebraic groups. It describes any finite-dimensional simple module of highest weight <em>λ</em> over such a group as the tensor product of Frobenius twists of simple modules with highest weights the weights appearing in a <em>p</em>-adic decomposition of <em>λ</em>, thereby reducing the character problem to a finite collection of weights. In recent years this theorem has been extended to various quasi-reductive supergroup schemes. In this paper, we prove the analogous result for the general linear group scheme <span><math><mi>G</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> for any object <em>X</em> in the Verlinde category <span><math><msub><mrow><mi>Ver</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"663 \",\"pages\":\"Pages 815-837\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005416\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005416","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
斯坦伯格张量积定理是还原代数群的模块表示理论中的一个基本结果。它描述了在这样一个群上的任何有限维最高权重简单模块λ,作为最高权重简单模块的弗罗贝纽斯捻的张量积,其权重出现在λ的p-adic分解中,从而将特征问题简化为权重的有限集合。近年来,这一定理被扩展到各种准还原超群方案。在本文中,我们证明了一般线性群方案 GL(X) 对于 Verlinde 范畴 Verp 中任何对象 X 的类似结果。
The Steinberg tensor product theorem for general linear group schemes in the Verlinde category
The Steinberg tensor product theorem is a fundamental result in the modular representation theory of reductive algebraic groups. It describes any finite-dimensional simple module of highest weight λ over such a group as the tensor product of Frobenius twists of simple modules with highest weights the weights appearing in a p-adic decomposition of λ, thereby reducing the character problem to a finite collection of weights. In recent years this theorem has been extended to various quasi-reductive supergroup schemes. In this paper, we prove the analogous result for the general linear group scheme for any object X in the Verlinde category .
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.