砖块的克利福德定理

Pub Date : 2024-10-11 DOI:10.1016/j.jalgebra.2024.09.021
Yuta Kozakai , Arashi Sakai
{"title":"砖块的克利福德定理","authors":"Yuta Kozakai ,&nbsp;Arashi Sakai","doi":"10.1016/j.jalgebra.2024.09.021","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a finite group, <em>N</em> a normal subgroup of <em>G</em>, and <em>k</em> a field of characteristic <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span>. In this paper, we formulate the brick version of Clifford's theorem under suitable assumptions and prove it by using the theory of wide subcategories. As an application of our theorem, we consider the restrictions of semibricks and two-term simple-minded collections under the assumption that the index of the normal subgroup <em>N</em> in <em>G</em> is a <em>p</em>-power.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clifford's theorem for bricks\",\"authors\":\"Yuta Kozakai ,&nbsp;Arashi Sakai\",\"doi\":\"10.1016/j.jalgebra.2024.09.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a finite group, <em>N</em> a normal subgroup of <em>G</em>, and <em>k</em> a field of characteristic <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span>. In this paper, we formulate the brick version of Clifford's theorem under suitable assumptions and prove it by using the theory of wide subcategories. As an application of our theorem, we consider the restrictions of semibricks and two-term simple-minded collections under the assumption that the index of the normal subgroup <em>N</em> in <em>G</em> is a <em>p</em>-power.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 G 是有限群,N 是 G 的正则子群,k 是特征 p>0 的域。在本文中,我们在适当的假设条件下提出了砖版克利福德定理,并利用广义子类理论证明了这一定理。作为我们定理的一个应用,我们考虑了在 G 中正态子群 N 的索引是 p 幂的假设下半砖和两期简明集合的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Clifford's theorem for bricks
Let G be a finite group, N a normal subgroup of G, and k a field of characteristic p>0. In this paper, we formulate the brick version of Clifford's theorem under suitable assumptions and prove it by using the theory of wide subcategories. As an application of our theorem, we consider the restrictions of semibricks and two-term simple-minded collections under the assumption that the index of the normal subgroup N in G is a p-power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信