{"title":"遗传无性类的周期派生霍尔代数","authors":"Haicheng Zhang","doi":"10.1016/j.jpaa.2024.107824","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>m</em> be a positive integer and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> be the <em>m</em>-periodic derived category of a finitary hereditary abelian category <span><math><mi>A</mi></math></span>. Applying the derived Hall numbers of the bounded derived category <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, we define an <em>m</em>-periodic extended derived Hall algebra for <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, and use it to give a global, unified and explicit characterization for the algebra structure of Bridgeland's Hall algebra of periodic complexes. Moreover, we also provide an explicit characterization for the odd periodic derived Hall algebra of <span><math><mi>A</mi></math></span> defined by Xu-Chen <span><span>[24]</span></span>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic derived Hall algebras of hereditary abelian categories\",\"authors\":\"Haicheng Zhang\",\"doi\":\"10.1016/j.jpaa.2024.107824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>m</em> be a positive integer and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> be the <em>m</em>-periodic derived category of a finitary hereditary abelian category <span><math><mi>A</mi></math></span>. Applying the derived Hall numbers of the bounded derived category <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, we define an <em>m</em>-periodic extended derived Hall algebra for <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, and use it to give a global, unified and explicit characterization for the algebra structure of Bridgeland's Hall algebra of periodic complexes. Moreover, we also provide an explicit characterization for the odd periodic derived Hall algebra of <span><math><mi>A</mi></math></span> defined by Xu-Chen <span><span>[24]</span></span>.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924002214\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002214","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 m 为正整数,Dm(A) 为有限遗传无性范畴 A 的 m 周期派生范畴。应用有界派生范畴 Db(A) 的派生霍尔数,我们定义了 Dm(A) 的 m 周期扩展派生霍尔代数,并用它给出了布里奇兰周期复数霍尔代数的全局、统一和明确的代数结构特征。此外,我们还为许琛[24]定义的 A 的奇周期派生霍尔代数提供了一个明确的表征。
Periodic derived Hall algebras of hereditary abelian categories
Let m be a positive integer and be the m-periodic derived category of a finitary hereditary abelian category . Applying the derived Hall numbers of the bounded derived category , we define an m-periodic extended derived Hall algebra for , and use it to give a global, unified and explicit characterization for the algebra structure of Bridgeland's Hall algebra of periodic complexes. Moreover, we also provide an explicit characterization for the odd periodic derived Hall algebra of defined by Xu-Chen [24].
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.