关于簇重复范畴和簇倾斜代数的克鲁尔-加布里埃尔维度

IF 0.7 2区 数学 Q2 MATHEMATICS
Alicja Jaworska-Pastuszak, Grzegorz Pastuszak, Grzegorz Bobiński
{"title":"关于簇重复范畴和簇倾斜代数的克鲁尔-加布里埃尔维度","authors":"Alicja Jaworska-Pastuszak,&nbsp;Grzegorz Pastuszak,&nbsp;Grzegorz Bobiński","doi":"10.1016/j.jpaa.2024.107823","DOIUrl":null,"url":null,"abstract":"<div><div>Assume that <em>K</em> is an algebraically closed field and denote by <span><math><mi>KG</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> the Krull-Gabriel dimension of <em>R</em>, where <em>R</em> is a locally bounded <em>K</em>-category (or a bound quiver <em>K</em>-algebra). Assume that <em>C</em> is a tilted <em>K</em>-algebra and <span><math><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>ˇ</mo></mrow></mover><mo>,</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> are the associated repetitive category, cluster repetitive category and cluster-tilted algebra, respectively. Our first result states that <span><math><mi>KG</mi><mo>(</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>=</mo><mi>KG</mi><mo>(</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>ˇ</mo></mrow></mover><mo>)</mo><mo>≤</mo><mi>KG</mi><mo>(</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span>. Since the Krull-Gabriel dimensions of tame locally support-finite repetitive categories are known, we further conclude that <span><math><mi>KG</mi><mo>(</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>=</mo><mi>KG</mi><mo>(</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>ˇ</mo></mrow></mover><mo>)</mo><mo>=</mo><mi>KG</mi><mo>(</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>∞</mo><mo>}</mo></math></span>. Finally, in the Appendix Grzegorz Bobiński presents a different way of determining the Krull-Gabriel dimension of the cluster-tilted algebras, by applying results of Geigle.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Krull-Gabriel dimension of cluster repetitive categories and cluster-tilted algebras\",\"authors\":\"Alicja Jaworska-Pastuszak,&nbsp;Grzegorz Pastuszak,&nbsp;Grzegorz Bobiński\",\"doi\":\"10.1016/j.jpaa.2024.107823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Assume that <em>K</em> is an algebraically closed field and denote by <span><math><mi>KG</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> the Krull-Gabriel dimension of <em>R</em>, where <em>R</em> is a locally bounded <em>K</em>-category (or a bound quiver <em>K</em>-algebra). Assume that <em>C</em> is a tilted <em>K</em>-algebra and <span><math><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>ˇ</mo></mrow></mover><mo>,</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> are the associated repetitive category, cluster repetitive category and cluster-tilted algebra, respectively. Our first result states that <span><math><mi>KG</mi><mo>(</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>=</mo><mi>KG</mi><mo>(</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>ˇ</mo></mrow></mover><mo>)</mo><mo>≤</mo><mi>KG</mi><mo>(</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span>. Since the Krull-Gabriel dimensions of tame locally support-finite repetitive categories are known, we further conclude that <span><math><mi>KG</mi><mo>(</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo><mo>=</mo><mi>KG</mi><mo>(</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>ˇ</mo></mrow></mover><mo>)</mo><mo>=</mo><mi>KG</mi><mo>(</mo><mover><mrow><mi>C</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>∞</mo><mo>}</mo></math></span>. Finally, in the Appendix Grzegorz Bobiński presents a different way of determining the Krull-Gabriel dimension of the cluster-tilted algebras, by applying results of Geigle.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924002202\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002202","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设 K 是一个代数闭域,用 KG(R) 表示 R 的克鲁尔-加布里埃尔维数,其中 R 是一个局部有界 K 范畴(或有界四元组 K-代数)。假设 C 是倾斜 K 代数,Cˆ,Cˇ,C˜ 分别是相关的重复范畴、簇重复范畴和簇倾斜代数。我们的第一个结果表明,KG(C˜)=KG(Cˇ)≤KG(Cˆ)。由于驯服局部支持无限重复范畴的克鲁尔-加布里埃尔维数是已知的,我们进一步得出结论:KG(C˜)=KG(Cˇ)=KG(Cˆ)∈{0,2,∞}。最后,在附录中,格热戈兹-波宾斯基(Grzegorz Bobiński)运用盖格尔(Geigle)的结果,提出了另一种确定簇倾斜代数的克鲁尔-加布里埃尔维度的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Krull-Gabriel dimension of cluster repetitive categories and cluster-tilted algebras
Assume that K is an algebraically closed field and denote by KG(R) the Krull-Gabriel dimension of R, where R is a locally bounded K-category (or a bound quiver K-algebra). Assume that C is a tilted K-algebra and Cˆ,Cˇ,C˜ are the associated repetitive category, cluster repetitive category and cluster-tilted algebra, respectively. Our first result states that KG(C˜)=KG(Cˇ)KG(Cˆ). Since the Krull-Gabriel dimensions of tame locally support-finite repetitive categories are known, we further conclude that KG(C˜)=KG(Cˇ)=KG(Cˆ){0,2,}. Finally, in the Appendix Grzegorz Bobiński presents a different way of determining the Krull-Gabriel dimension of the cluster-tilted algebras, by applying results of Geigle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信