使用电纺碳金属基电极催化剂提高钒锰氧化还原液流电池的性能

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Barun Kumar Chakrabarti , Mengzheng Ouyang , Baidaa Alkhateab , J. Rubio-Garcia , Koray Bahadır Dönmez , Zehra Çobandede , Reza Afshar Ghotli , Serap Hayat Soytaş , Mustafa Kemal Bayazıt , Yashar S. Hajimolana , Pejman Kazempoor , Metin Gençten , Chee Tong John Low , Nigel P. Brandon
{"title":"使用电纺碳金属基电极催化剂提高钒锰氧化还原液流电池的性能","authors":"Barun Kumar Chakrabarti ,&nbsp;Mengzheng Ouyang ,&nbsp;Baidaa Alkhateab ,&nbsp;J. Rubio-Garcia ,&nbsp;Koray Bahadır Dönmez ,&nbsp;Zehra Çobandede ,&nbsp;Reza Afshar Ghotli ,&nbsp;Serap Hayat Soytaş ,&nbsp;Mustafa Kemal Bayazıt ,&nbsp;Yashar S. Hajimolana ,&nbsp;Pejman Kazempoor ,&nbsp;Metin Gençten ,&nbsp;Chee Tong John Low ,&nbsp;Nigel P. Brandon","doi":"10.1016/j.materresbull.2024.113140","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the performance of both a vanadium/manganese redox flow battery (V/Mn RFB) and an all-vanadium redox flow battery (VRFB), employing carbon metal fabrics (CMFs) prepared through electrospinning followed by carbonization. Noteworthy advancements are observed in both systems upon coupling CMFs with thermally treated graphite felt (GF) electrodes. Nearly doubled peak power density and 50 % higher capacity utilization over 150 charge/discharge cycles at 75 mA cm<sup>−2</sup> are achieved for the V/Mn RFB with the incorporation of CMFs alongside graphite felt as catalysts. The VRFB demonstrates notable enhancements too, achieving approximately 200 cycles at a current density of 80 mA cm<sup>−2</sup>, with high efficiencies (85 %) and electrolyte utilization (79 %) when CMFs are used in combination with graphite felts. These advancements may facilitate pilot-scale testing and integration of the V/Mn RFB for the employment in the renewable energy storage sector and grid-balancing studies.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113140"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement in the performance of a vanadium-manganese redox flow battery using electrospun carbon metal-based electrode catalysts\",\"authors\":\"Barun Kumar Chakrabarti ,&nbsp;Mengzheng Ouyang ,&nbsp;Baidaa Alkhateab ,&nbsp;J. Rubio-Garcia ,&nbsp;Koray Bahadır Dönmez ,&nbsp;Zehra Çobandede ,&nbsp;Reza Afshar Ghotli ,&nbsp;Serap Hayat Soytaş ,&nbsp;Mustafa Kemal Bayazıt ,&nbsp;Yashar S. Hajimolana ,&nbsp;Pejman Kazempoor ,&nbsp;Metin Gençten ,&nbsp;Chee Tong John Low ,&nbsp;Nigel P. Brandon\",\"doi\":\"10.1016/j.materresbull.2024.113140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the performance of both a vanadium/manganese redox flow battery (V/Mn RFB) and an all-vanadium redox flow battery (VRFB), employing carbon metal fabrics (CMFs) prepared through electrospinning followed by carbonization. Noteworthy advancements are observed in both systems upon coupling CMFs with thermally treated graphite felt (GF) electrodes. Nearly doubled peak power density and 50 % higher capacity utilization over 150 charge/discharge cycles at 75 mA cm<sup>−2</sup> are achieved for the V/Mn RFB with the incorporation of CMFs alongside graphite felt as catalysts. The VRFB demonstrates notable enhancements too, achieving approximately 200 cycles at a current density of 80 mA cm<sup>−2</sup>, with high efficiencies (85 %) and electrolyte utilization (79 %) when CMFs are used in combination with graphite felts. These advancements may facilitate pilot-scale testing and integration of the V/Mn RFB for the employment in the renewable energy storage sector and grid-balancing studies.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"182 \",\"pages\":\"Article 113140\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540824004707\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824004707","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了钒/锰氧化还原液流电池(V/Mn RFB)和全钒氧化还原液流电池(VRFB)的性能,这两种电池都采用了先电纺再碳化的碳金属织物(CMF)。在将 CMF 与热处理石墨毡(GF)电极耦合后,两种系统都取得了显著进步。将 CMF 与石墨毡一起作为催化剂,V/Mn RFB 的峰值功率密度几乎翻了一番,在 75 mA cm-2 的条件下进行 150 次充电/放电循环后,容量利用率提高了 50%。VRFB 的性能也有显著提高,在电流密度为 80 mA cm-2 时可实现约 200 个循环,在 CMF 与石墨毡结合使用时,效率高(85%),电解液利用率高(79%)。这些进步可能会促进 V/Mn RFB 的试点规模测试和集成,以用于可再生能源存储领域和电网平衡研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancement in the performance of a vanadium-manganese redox flow battery using electrospun carbon metal-based electrode catalysts

Enhancement in the performance of a vanadium-manganese redox flow battery using electrospun carbon metal-based electrode catalysts
This study investigates the performance of both a vanadium/manganese redox flow battery (V/Mn RFB) and an all-vanadium redox flow battery (VRFB), employing carbon metal fabrics (CMFs) prepared through electrospinning followed by carbonization. Noteworthy advancements are observed in both systems upon coupling CMFs with thermally treated graphite felt (GF) electrodes. Nearly doubled peak power density and 50 % higher capacity utilization over 150 charge/discharge cycles at 75 mA cm−2 are achieved for the V/Mn RFB with the incorporation of CMFs alongside graphite felt as catalysts. The VRFB demonstrates notable enhancements too, achieving approximately 200 cycles at a current density of 80 mA cm−2, with high efficiencies (85 %) and electrolyte utilization (79 %) when CMFs are used in combination with graphite felts. These advancements may facilitate pilot-scale testing and integration of the V/Mn RFB for the employment in the renewable energy storage sector and grid-balancing studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信