Lin Zuo, Gonghong Qiu, Yan Liu, Xiaolan Chen, Kai Sun, Igor B. Krylov, Lingbo Qu, Alexander O. Terent’ev, Bing Yu
{"title":"用于光氧化中性三氟甲基化反应的电子受体控制聚酰亚胺","authors":"Lin Zuo, Gonghong Qiu, Yan Liu, Xiaolan Chen, Kai Sun, Igor B. Krylov, Lingbo Qu, Alexander O. Terent’ev, Bing Yu","doi":"10.1016/j.checat.2024.101151","DOIUrl":null,"url":null,"abstract":"Heterogeneous photocatalysts present notable benefits over homogeneous systems. However, their application is often hindered by spontaneous electron-hole recombination, undermining photoconversion efficiency. Addressing this, our study introduces a diversity-oriented synthesis of electron-donor-acceptor (D-A)-type polyimides via N-amidation of aromatic dianhydrides with anilines. These polyimides exhibit segregated D-A alignments that facilitate enhanced charge separation, rapid electron transfer, and long-lived photogenerated electron-hole pairs, attributed to superior electron-donating and -accepting capabilities alongside predictable π-π stacking. Their efficacy is demonstrated in catalyzing visible-light-driven redox-neutral C–H trifluoromethylation, transforming pharmaceuticals and bioactive molecules into trifluoromethyl-functionalized products with high yield and selectivity. A continuous-flow fixed-bed photoreactor supports gram-scale synthesis, and the photocatalyst maintains activity through at least four recycling rounds. Time-dependent density functional theory (TD-DFT) and non-covalent interaction (NCI) analyses suggest that the observed performance enhancement is due to controlled photoinduced electron transfer within the D-A system and intrachain π-π stacking.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"231 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electron-acceptor-controlled polyimides for photoredox-neutral trifluoromethylation\",\"authors\":\"Lin Zuo, Gonghong Qiu, Yan Liu, Xiaolan Chen, Kai Sun, Igor B. Krylov, Lingbo Qu, Alexander O. Terent’ev, Bing Yu\",\"doi\":\"10.1016/j.checat.2024.101151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneous photocatalysts present notable benefits over homogeneous systems. However, their application is often hindered by spontaneous electron-hole recombination, undermining photoconversion efficiency. Addressing this, our study introduces a diversity-oriented synthesis of electron-donor-acceptor (D-A)-type polyimides via N-amidation of aromatic dianhydrides with anilines. These polyimides exhibit segregated D-A alignments that facilitate enhanced charge separation, rapid electron transfer, and long-lived photogenerated electron-hole pairs, attributed to superior electron-donating and -accepting capabilities alongside predictable π-π stacking. Their efficacy is demonstrated in catalyzing visible-light-driven redox-neutral C–H trifluoromethylation, transforming pharmaceuticals and bioactive molecules into trifluoromethyl-functionalized products with high yield and selectivity. A continuous-flow fixed-bed photoreactor supports gram-scale synthesis, and the photocatalyst maintains activity through at least four recycling rounds. Time-dependent density functional theory (TD-DFT) and non-covalent interaction (NCI) analyses suggest that the observed performance enhancement is due to controlled photoinduced electron transfer within the D-A system and intrachain π-π stacking.\",\"PeriodicalId\":53121,\"journal\":{\"name\":\"Chem Catalysis\",\"volume\":\"231 1\",\"pages\":\"\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.checat.2024.101151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Electron-acceptor-controlled polyimides for photoredox-neutral trifluoromethylation
Heterogeneous photocatalysts present notable benefits over homogeneous systems. However, their application is often hindered by spontaneous electron-hole recombination, undermining photoconversion efficiency. Addressing this, our study introduces a diversity-oriented synthesis of electron-donor-acceptor (D-A)-type polyimides via N-amidation of aromatic dianhydrides with anilines. These polyimides exhibit segregated D-A alignments that facilitate enhanced charge separation, rapid electron transfer, and long-lived photogenerated electron-hole pairs, attributed to superior electron-donating and -accepting capabilities alongside predictable π-π stacking. Their efficacy is demonstrated in catalyzing visible-light-driven redox-neutral C–H trifluoromethylation, transforming pharmaceuticals and bioactive molecules into trifluoromethyl-functionalized products with high yield and selectivity. A continuous-flow fixed-bed photoreactor supports gram-scale synthesis, and the photocatalyst maintains activity through at least four recycling rounds. Time-dependent density functional theory (TD-DFT) and non-covalent interaction (NCI) analyses suggest that the observed performance enhancement is due to controlled photoinduced electron transfer within the D-A system and intrachain π-π stacking.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.