Zhaole Lu, Rong Yang, Yingchao Yu, Yuting Wang, Bin Zhang, Lingjun Kong
{"title":"通过锚定 Co3O4 中的 Ru 位点提高硝酸-氨电合成中的活性制氢能力","authors":"Zhaole Lu, Rong Yang, Yingchao Yu, Yuting Wang, Bin Zhang, Lingjun Kong","doi":"10.1016/j.checat.2024.101152","DOIUrl":null,"url":null,"abstract":"The electrochemical reduction of nitrate to ammonia can serve as an effective complement to the traditional Haber-Bosch process. Currently, rapid and continuous ammonia production is challenging because of the multistep hydrogenation process and the constant alkalinization of the electrolyte. Herein, Ru atoms are incorporated into the octahedral sites of Co<sub>3</sub>O<sub>4</sub> to achieve an ammonia yield rate of 24.6 mg h<sup>−1</sup> cm<sup>−2</sup>. Electrochemical <em>in situ</em> spectroscopic analyses and theoretical calculations reveal that Ru sites improve water molecule coverage and facilitate the production of active hydrogen atoms, leading to stable and orderly ammonia production. Furthermore, a peak power density of 32.28 mW cm<sup>−2</sup>, a high ammonia Faradaic efficiency of 98.2%, and excellent durability (91 h) are achieved in a Ru-Co<sub>3</sub>O<sub>4</sub>-based Zn-nitrate battery, indicating its practical applicability. This work may provide a method for efficient nitrate reduction to ammonia or other hydrogenation reactions via the synergistic modulation of active sites.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"3 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting active hydrogen generation by anchored Ru sites in Co3O4 for nitrate-to-ammonia electrosynthesis\",\"authors\":\"Zhaole Lu, Rong Yang, Yingchao Yu, Yuting Wang, Bin Zhang, Lingjun Kong\",\"doi\":\"10.1016/j.checat.2024.101152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrochemical reduction of nitrate to ammonia can serve as an effective complement to the traditional Haber-Bosch process. Currently, rapid and continuous ammonia production is challenging because of the multistep hydrogenation process and the constant alkalinization of the electrolyte. Herein, Ru atoms are incorporated into the octahedral sites of Co<sub>3</sub>O<sub>4</sub> to achieve an ammonia yield rate of 24.6 mg h<sup>−1</sup> cm<sup>−2</sup>. Electrochemical <em>in situ</em> spectroscopic analyses and theoretical calculations reveal that Ru sites improve water molecule coverage and facilitate the production of active hydrogen atoms, leading to stable and orderly ammonia production. Furthermore, a peak power density of 32.28 mW cm<sup>−2</sup>, a high ammonia Faradaic efficiency of 98.2%, and excellent durability (91 h) are achieved in a Ru-Co<sub>3</sub>O<sub>4</sub>-based Zn-nitrate battery, indicating its practical applicability. This work may provide a method for efficient nitrate reduction to ammonia or other hydrogenation reactions via the synergistic modulation of active sites.\",\"PeriodicalId\":53121,\"journal\":{\"name\":\"Chem Catalysis\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.checat.2024.101152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Boosting active hydrogen generation by anchored Ru sites in Co3O4 for nitrate-to-ammonia electrosynthesis
The electrochemical reduction of nitrate to ammonia can serve as an effective complement to the traditional Haber-Bosch process. Currently, rapid and continuous ammonia production is challenging because of the multistep hydrogenation process and the constant alkalinization of the electrolyte. Herein, Ru atoms are incorporated into the octahedral sites of Co3O4 to achieve an ammonia yield rate of 24.6 mg h−1 cm−2. Electrochemical in situ spectroscopic analyses and theoretical calculations reveal that Ru sites improve water molecule coverage and facilitate the production of active hydrogen atoms, leading to stable and orderly ammonia production. Furthermore, a peak power density of 32.28 mW cm−2, a high ammonia Faradaic efficiency of 98.2%, and excellent durability (91 h) are achieved in a Ru-Co3O4-based Zn-nitrate battery, indicating its practical applicability. This work may provide a method for efficient nitrate reduction to ammonia or other hydrogenation reactions via the synergistic modulation of active sites.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.