{"title":"复杂多孔介质中稳态扩散的孔隙分类法","authors":"Seunggeon Lee, Dongjae Kim, Jaewook Nam","doi":"10.1002/aic.18622","DOIUrl":null,"url":null,"abstract":"In porous media, the transport and flow through the void phase are influenced by the internal pore network due to its complex morphology. In other words, the contributions of individual pores can vary due to their connectivity within the network and characteristics in physical phenomena. In this study, we propose a pore classification method according to geometries and physical behaviors to understand the role of each pore in microstructure. Our method classifies entire pores into backbone, dead-end, and isolated pore using connectivity analysis and steady-state diffusion. The backbone acts as the main pathway for the transportation process. Therefore, backbone fraction can be utilized as a quantitative indicator of the pore network in microstructure. Furthermore, this approach enables us to explore the relationship between classified pores and microstructural properties through numerical experiment using virtual structures. This method can be used for various porous materials, such as battery electrodes, membranes, and soil.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"31 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pore classification method with steady-state diffusion in complex porous media\",\"authors\":\"Seunggeon Lee, Dongjae Kim, Jaewook Nam\",\"doi\":\"10.1002/aic.18622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In porous media, the transport and flow through the void phase are influenced by the internal pore network due to its complex morphology. In other words, the contributions of individual pores can vary due to their connectivity within the network and characteristics in physical phenomena. In this study, we propose a pore classification method according to geometries and physical behaviors to understand the role of each pore in microstructure. Our method classifies entire pores into backbone, dead-end, and isolated pore using connectivity analysis and steady-state diffusion. The backbone acts as the main pathway for the transportation process. Therefore, backbone fraction can be utilized as a quantitative indicator of the pore network in microstructure. Furthermore, this approach enables us to explore the relationship between classified pores and microstructural properties through numerical experiment using virtual structures. This method can be used for various porous materials, such as battery electrodes, membranes, and soil.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18622\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18622","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Pore classification method with steady-state diffusion in complex porous media
In porous media, the transport and flow through the void phase are influenced by the internal pore network due to its complex morphology. In other words, the contributions of individual pores can vary due to their connectivity within the network and characteristics in physical phenomena. In this study, we propose a pore classification method according to geometries and physical behaviors to understand the role of each pore in microstructure. Our method classifies entire pores into backbone, dead-end, and isolated pore using connectivity analysis and steady-state diffusion. The backbone acts as the main pathway for the transportation process. Therefore, backbone fraction can be utilized as a quantitative indicator of the pore network in microstructure. Furthermore, this approach enables us to explore the relationship between classified pores and microstructural properties through numerical experiment using virtual structures. This method can be used for various porous materials, such as battery electrodes, membranes, and soil.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.