Juan Wu , Yugang Lai , Xindong Yang , Qinghua Zhou , Zhuxiu Qian , Anping Zhang , Jianqiang Sun , Jay Gan
{"title":"胡萝卜对轮胎添加剂苯并噻唑的吸收和代谢与结构有关","authors":"Juan Wu , Yugang Lai , Xindong Yang , Qinghua Zhou , Zhuxiu Qian , Anping Zhang , Jianqiang Sun , Jay Gan","doi":"10.1016/j.envint.2024.109075","DOIUrl":null,"url":null,"abstract":"<div><div>Tire additives, such as benzothiazole and its derivatives (collectively called BTs), are large-volume chemicals that are constantly emitted into agricultural environment via tire-road wearing and other actions. The potential accumulation of BTs in food crops depends largely on their metabolism in plants, which is poorly understood. Herein, we evaluated uptake and metabolism of six BTs in carrot callus and intact carrot plants to understand their structure-specific metabolism. All BTs were readily taken up by carrot roots, with their root concentration factors (RCF) ranging from 1.66 ± 0.01 to 2.95 ± 0.05. Although the tested BTs exhibited poor upward translocation from root to leaves (translocation factors < 1), the translocation factors of 2-methylbenzothiazole (0.79) and 2-aminobenzothiazole (0.65) were significantly higher than that of 2-methylbenzothiazole (0.18) and 2-(methylthio)benzothiazole (0.22). These results indicated the structure-dependent uptake and translocation of BTs in carrot. Correlation analysis between log <em>K</em><sub>ow</sub> and log <em>RCF</em> or <em>TF</em> revealed that the hydrophobicity of BTs predominantly affected their root uptake and acropetal translocation in carrots. With the aid of high-resolution mass spectrometry, a total of 18 novel metabolites of BTs were tentatively identified, suggesting that BT compounds can be metabolized by carrot callus. The proposed metabolites of BTs include four hydroxylated products, one demethylated product, five glycosylated products and eight amino acid conjugated products, revealing that glycosylation and amino acid conjugation were the dominant transformation pathways for BT metabolism in carrot. However, the detected species of metabolites for six BTs varied distinctly, indicating structure-specific metabolism of BTs in plants. The findings of this study improve our understanding of structure-dependent fate and transformation of BTs in plants. Since BTs metabolites in food crops could present an unintended exposure route to consumers, the structure-specific differences of BTs uptake, metabolism and accumulation in plants must be considered when addressing human dietary exposure risks.</div></div>","PeriodicalId":308,"journal":{"name":"Environment International","volume":"193 ","pages":"Article 109075"},"PeriodicalIF":10.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-Dependent uptake and metabolism of Tire additives Benzothiazoles in carrot plant\",\"authors\":\"Juan Wu , Yugang Lai , Xindong Yang , Qinghua Zhou , Zhuxiu Qian , Anping Zhang , Jianqiang Sun , Jay Gan\",\"doi\":\"10.1016/j.envint.2024.109075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tire additives, such as benzothiazole and its derivatives (collectively called BTs), are large-volume chemicals that are constantly emitted into agricultural environment via tire-road wearing and other actions. The potential accumulation of BTs in food crops depends largely on their metabolism in plants, which is poorly understood. Herein, we evaluated uptake and metabolism of six BTs in carrot callus and intact carrot plants to understand their structure-specific metabolism. All BTs were readily taken up by carrot roots, with their root concentration factors (RCF) ranging from 1.66 ± 0.01 to 2.95 ± 0.05. Although the tested BTs exhibited poor upward translocation from root to leaves (translocation factors < 1), the translocation factors of 2-methylbenzothiazole (0.79) and 2-aminobenzothiazole (0.65) were significantly higher than that of 2-methylbenzothiazole (0.18) and 2-(methylthio)benzothiazole (0.22). These results indicated the structure-dependent uptake and translocation of BTs in carrot. Correlation analysis between log <em>K</em><sub>ow</sub> and log <em>RCF</em> or <em>TF</em> revealed that the hydrophobicity of BTs predominantly affected their root uptake and acropetal translocation in carrots. With the aid of high-resolution mass spectrometry, a total of 18 novel metabolites of BTs were tentatively identified, suggesting that BT compounds can be metabolized by carrot callus. The proposed metabolites of BTs include four hydroxylated products, one demethylated product, five glycosylated products and eight amino acid conjugated products, revealing that glycosylation and amino acid conjugation were the dominant transformation pathways for BT metabolism in carrot. However, the detected species of metabolites for six BTs varied distinctly, indicating structure-specific metabolism of BTs in plants. The findings of this study improve our understanding of structure-dependent fate and transformation of BTs in plants. Since BTs metabolites in food crops could present an unintended exposure route to consumers, the structure-specific differences of BTs uptake, metabolism and accumulation in plants must be considered when addressing human dietary exposure risks.</div></div>\",\"PeriodicalId\":308,\"journal\":{\"name\":\"Environment International\",\"volume\":\"193 \",\"pages\":\"Article 109075\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment International\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0160412024006615\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160412024006615","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Structure-Dependent uptake and metabolism of Tire additives Benzothiazoles in carrot plant
Tire additives, such as benzothiazole and its derivatives (collectively called BTs), are large-volume chemicals that are constantly emitted into agricultural environment via tire-road wearing and other actions. The potential accumulation of BTs in food crops depends largely on their metabolism in plants, which is poorly understood. Herein, we evaluated uptake and metabolism of six BTs in carrot callus and intact carrot plants to understand their structure-specific metabolism. All BTs were readily taken up by carrot roots, with their root concentration factors (RCF) ranging from 1.66 ± 0.01 to 2.95 ± 0.05. Although the tested BTs exhibited poor upward translocation from root to leaves (translocation factors < 1), the translocation factors of 2-methylbenzothiazole (0.79) and 2-aminobenzothiazole (0.65) were significantly higher than that of 2-methylbenzothiazole (0.18) and 2-(methylthio)benzothiazole (0.22). These results indicated the structure-dependent uptake and translocation of BTs in carrot. Correlation analysis between log Kow and log RCF or TF revealed that the hydrophobicity of BTs predominantly affected their root uptake and acropetal translocation in carrots. With the aid of high-resolution mass spectrometry, a total of 18 novel metabolites of BTs were tentatively identified, suggesting that BT compounds can be metabolized by carrot callus. The proposed metabolites of BTs include four hydroxylated products, one demethylated product, five glycosylated products and eight amino acid conjugated products, revealing that glycosylation and amino acid conjugation were the dominant transformation pathways for BT metabolism in carrot. However, the detected species of metabolites for six BTs varied distinctly, indicating structure-specific metabolism of BTs in plants. The findings of this study improve our understanding of structure-dependent fate and transformation of BTs in plants. Since BTs metabolites in food crops could present an unintended exposure route to consumers, the structure-specific differences of BTs uptake, metabolism and accumulation in plants must be considered when addressing human dietary exposure risks.
期刊介绍:
Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review.
It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.