{"title":"NHC 催化的远程位点选择性炔烃 C-H 丙烯酸化反应","authors":"Jiamiao Jin, Shi-Chao Ren","doi":"10.1016/j.checat.2024.101125","DOIUrl":null,"url":null,"abstract":"Recently, Li’s group designed a conceptually novel radical strategy for site-selective functionalization of ultra-remote arene C–H bond. The arenes were activated by intramolecular nitrogen-centered radical instead of generally used C–H metalation. The NHC-catalyzed radical cross-coupling acts as the key step to forging C–C bond at the para position of the arenes.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"79 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NHC-catalyzed remote site-selective arene C–H acylations\",\"authors\":\"Jiamiao Jin, Shi-Chao Ren\",\"doi\":\"10.1016/j.checat.2024.101125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Li’s group designed a conceptually novel radical strategy for site-selective functionalization of ultra-remote arene C–H bond. The arenes were activated by intramolecular nitrogen-centered radical instead of generally used C–H metalation. The NHC-catalyzed radical cross-coupling acts as the key step to forging C–C bond at the para position of the arenes.\",\"PeriodicalId\":53121,\"journal\":{\"name\":\"Chem Catalysis\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.checat.2024.101125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Recently, Li’s group designed a conceptually novel radical strategy for site-selective functionalization of ultra-remote arene C–H bond. The arenes were activated by intramolecular nitrogen-centered radical instead of generally used C–H metalation. The NHC-catalyzed radical cross-coupling acts as the key step to forging C–C bond at the para position of the arenes.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.