Shubham Singh, Ulrich E. Dransfeld, Yohannes A. Ambaw, Joshua Lopez-Scarim, Robert V. Farese, Tobias C. Walther
{"title":"PLD3 和 PLD4 合成 S,S-BMP,这是一种能在溶酶体中实现脂质降解的关键磷脂","authors":"Shubham Singh, Ulrich E. Dransfeld, Yohannes A. Ambaw, Joshua Lopez-Scarim, Robert V. Farese, Tobias C. Walther","doi":"10.1016/j.cell.2024.09.036","DOIUrl":null,"url":null,"abstract":"Bis(monoacylglycero)phosphate (BMP) is an abundant lysosomal phospholipid required for degradation of lipids, particularly gangliosides. Alterations in BMP levels are associated with neurodegenerative diseases. Unlike typical glycerophospholipids, lysosomal BMP has two chiral glycerol carbons in the <em>S</em> (rather than the <em>R</em>) stereo-conformation, protecting it from lysosomal degradation. How this unusual and yet crucial <em>S</em>,<em>S-</em>stereochemistry is achieved is unknown. Here, we report that phospholipases D3 and D4 (PLD3 and PLD4) synthesize lysosomal <em>S</em>,<em>S-</em>BMP, with either enzyme catalyzing the critical glycerol stereo-inversion reaction <em>in vitro</em>. Deletion of PLD3 or PLD4 markedly reduced BMP levels in cells or in murine tissues where either enzyme is highly expressed (brain for PLD3; spleen for PLD4), leading to gangliosidosis and lysosomal abnormalities. PLD3 mutants associated with neurodegenerative diseases, including risk of Alzheimer’s disease, diminished PLD3 catalytic activity. We conclude that PLD3/4 enzymes synthesize lysosomal <em>S</em>,<em>S-</em>BMP, a crucial lipid for maintaining brain health.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"124 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PLD3 and PLD4 synthesize S,S-BMP, a key phospholipid enabling lipid degradation in lysosomes\",\"authors\":\"Shubham Singh, Ulrich E. Dransfeld, Yohannes A. Ambaw, Joshua Lopez-Scarim, Robert V. Farese, Tobias C. Walther\",\"doi\":\"10.1016/j.cell.2024.09.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bis(monoacylglycero)phosphate (BMP) is an abundant lysosomal phospholipid required for degradation of lipids, particularly gangliosides. Alterations in BMP levels are associated with neurodegenerative diseases. Unlike typical glycerophospholipids, lysosomal BMP has two chiral glycerol carbons in the <em>S</em> (rather than the <em>R</em>) stereo-conformation, protecting it from lysosomal degradation. How this unusual and yet crucial <em>S</em>,<em>S-</em>stereochemistry is achieved is unknown. Here, we report that phospholipases D3 and D4 (PLD3 and PLD4) synthesize lysosomal <em>S</em>,<em>S-</em>BMP, with either enzyme catalyzing the critical glycerol stereo-inversion reaction <em>in vitro</em>. Deletion of PLD3 or PLD4 markedly reduced BMP levels in cells or in murine tissues where either enzyme is highly expressed (brain for PLD3; spleen for PLD4), leading to gangliosidosis and lysosomal abnormalities. PLD3 mutants associated with neurodegenerative diseases, including risk of Alzheimer’s disease, diminished PLD3 catalytic activity. We conclude that PLD3/4 enzymes synthesize lysosomal <em>S</em>,<em>S-</em>BMP, a crucial lipid for maintaining brain health.\",\"PeriodicalId\":9656,\"journal\":{\"name\":\"Cell\",\"volume\":\"124 1\",\"pages\":\"\"},\"PeriodicalIF\":45.5000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cell.2024.09.036\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.09.036","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
PLD3 and PLD4 synthesize S,S-BMP, a key phospholipid enabling lipid degradation in lysosomes
Bis(monoacylglycero)phosphate (BMP) is an abundant lysosomal phospholipid required for degradation of lipids, particularly gangliosides. Alterations in BMP levels are associated with neurodegenerative diseases. Unlike typical glycerophospholipids, lysosomal BMP has two chiral glycerol carbons in the S (rather than the R) stereo-conformation, protecting it from lysosomal degradation. How this unusual and yet crucial S,S-stereochemistry is achieved is unknown. Here, we report that phospholipases D3 and D4 (PLD3 and PLD4) synthesize lysosomal S,S-BMP, with either enzyme catalyzing the critical glycerol stereo-inversion reaction in vitro. Deletion of PLD3 or PLD4 markedly reduced BMP levels in cells or in murine tissues where either enzyme is highly expressed (brain for PLD3; spleen for PLD4), leading to gangliosidosis and lysosomal abnormalities. PLD3 mutants associated with neurodegenerative diseases, including risk of Alzheimer’s disease, diminished PLD3 catalytic activity. We conclude that PLD3/4 enzymes synthesize lysosomal S,S-BMP, a crucial lipid for maintaining brain health.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.