用于 MXene 电极的超稳定低迂回度快速离子纳米通道

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yuhang Zhang , Yongfa Cheng , Qixiang Zhang , Wenbin He , Yongxin Wang , Yanan Ma , Gengchen Yu , Mengjie Wang , Bowen Gao , Tao Huang , Binghui Ge , Yihua Gao , Li Wen , Siliang Wang , Yang Yue
{"title":"用于 MXene 电极的超稳定低迂回度快速离子纳米通道","authors":"Yuhang Zhang ,&nbsp;Yongfa Cheng ,&nbsp;Qixiang Zhang ,&nbsp;Wenbin He ,&nbsp;Yongxin Wang ,&nbsp;Yanan Ma ,&nbsp;Gengchen Yu ,&nbsp;Mengjie Wang ,&nbsp;Bowen Gao ,&nbsp;Tao Huang ,&nbsp;Binghui Ge ,&nbsp;Yihua Gao ,&nbsp;Li Wen ,&nbsp;Siliang Wang ,&nbsp;Yang Yue","doi":"10.1016/j.ensm.2024.103829","DOIUrl":null,"url":null,"abstract":"<div><div>The development of flexible MXene-based electrodes with hyperstable ion nanochannels and low tortuosity, remains daunting challenging for long-term wearable electronic devices. This paper presents a hydrogen-bonding enhanced holey MXene (HC-HMXene) electrode with maximum ion accessibility, optimized ion transport pathways, and hyperstable ion nanochannels. Specifically, three roles of introducing in-plane mesopores, reducing the lateral dimensions, and increasing the interlayer spacing in HMXene film notably enhance the electrolyte permeation efficiency and shorten the ion transport paths of the electrode (resulting in a 78.7-fold decrease in tortuosity). Thus, the constructed HC-HMXene electrode exhibits 41.1 times higher diffusion coefficient and 2.3 times higher specific capacitance than those of closely restacked film electrode with the same mass loading of MXene. Furthermore, the aramid nanofibers introduced among the MXene layers as interlocking agents bond the nanosheets <em>via</em> hydrogen interaction and significantly enhance the stability of the ion channel. Consequently, the HC-HMXene film effectively resists swelling behavior and maintains good structural stability in aqueous media. Moreover, the flexible sensing integrated system, powered by a HC-HMXene-based zinc ion microcapacitor, exhibits promising application prospects in real-time monitoring human physiological characteristics.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"73 ","pages":"Article 103829"},"PeriodicalIF":18.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperstable low-tortuosity fast ion nanochannels for MXene electrodes\",\"authors\":\"Yuhang Zhang ,&nbsp;Yongfa Cheng ,&nbsp;Qixiang Zhang ,&nbsp;Wenbin He ,&nbsp;Yongxin Wang ,&nbsp;Yanan Ma ,&nbsp;Gengchen Yu ,&nbsp;Mengjie Wang ,&nbsp;Bowen Gao ,&nbsp;Tao Huang ,&nbsp;Binghui Ge ,&nbsp;Yihua Gao ,&nbsp;Li Wen ,&nbsp;Siliang Wang ,&nbsp;Yang Yue\",\"doi\":\"10.1016/j.ensm.2024.103829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of flexible MXene-based electrodes with hyperstable ion nanochannels and low tortuosity, remains daunting challenging for long-term wearable electronic devices. This paper presents a hydrogen-bonding enhanced holey MXene (HC-HMXene) electrode with maximum ion accessibility, optimized ion transport pathways, and hyperstable ion nanochannels. Specifically, three roles of introducing in-plane mesopores, reducing the lateral dimensions, and increasing the interlayer spacing in HMXene film notably enhance the electrolyte permeation efficiency and shorten the ion transport paths of the electrode (resulting in a 78.7-fold decrease in tortuosity). Thus, the constructed HC-HMXene electrode exhibits 41.1 times higher diffusion coefficient and 2.3 times higher specific capacitance than those of closely restacked film electrode with the same mass loading of MXene. Furthermore, the aramid nanofibers introduced among the MXene layers as interlocking agents bond the nanosheets <em>via</em> hydrogen interaction and significantly enhance the stability of the ion channel. Consequently, the HC-HMXene film effectively resists swelling behavior and maintains good structural stability in aqueous media. Moreover, the flexible sensing integrated system, powered by a HC-HMXene-based zinc ion microcapacitor, exhibits promising application prospects in real-time monitoring human physiological characteristics.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"73 \",\"pages\":\"Article 103829\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S240582972400655X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240582972400655X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发具有超稳定离子纳米通道和低迂回度的柔性 MXene 基电极,对于长期可穿戴电子设备来说仍然是一项艰巨的挑战。本文介绍了一种氢键增强型孔状 MXene(HC-HMXene)电极,它具有最大的离子可及性、优化的离子传输路径和超稳定的离子纳米通道。具体来说,在 HMXene 薄膜中引入面内介孔、减小横向尺寸和增大层间间距的三种作用显著提高了电解质渗透效率,缩短了电极的离子传输路径(使迂回度降低了 78.7 倍)。因此,所构建的 HC-HMXene 电极的扩散系数和比电容分别是相同质量 MXene 装载量的紧密堆叠薄膜电极的 41.1 倍和 2.3 倍。此外,在 MXene 层之间引入的芳纶纳米纤维作为互锁剂,通过氢相互作用将纳米片粘合在一起,显著提高了离子通道的稳定性。因此,HC-HMXene 薄膜能有效防止膨胀行为,并在水介质中保持良好的结构稳定性。此外,由基于 HC-HMXene 的锌离子微电容器驱动的柔性传感集成系统在实时监测人体生理特征方面具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperstable low-tortuosity fast ion nanochannels for MXene electrodes
The development of flexible MXene-based electrodes with hyperstable ion nanochannels and low tortuosity, remains daunting challenging for long-term wearable electronic devices. This paper presents a hydrogen-bonding enhanced holey MXene (HC-HMXene) electrode with maximum ion accessibility, optimized ion transport pathways, and hyperstable ion nanochannels. Specifically, three roles of introducing in-plane mesopores, reducing the lateral dimensions, and increasing the interlayer spacing in HMXene film notably enhance the electrolyte permeation efficiency and shorten the ion transport paths of the electrode (resulting in a 78.7-fold decrease in tortuosity). Thus, the constructed HC-HMXene electrode exhibits 41.1 times higher diffusion coefficient and 2.3 times higher specific capacitance than those of closely restacked film electrode with the same mass loading of MXene. Furthermore, the aramid nanofibers introduced among the MXene layers as interlocking agents bond the nanosheets via hydrogen interaction and significantly enhance the stability of the ion channel. Consequently, the HC-HMXene film effectively resists swelling behavior and maintains good structural stability in aqueous media. Moreover, the flexible sensing integrated system, powered by a HC-HMXene-based zinc ion microcapacitor, exhibits promising application prospects in real-time monitoring human physiological characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信