P. Agustin Boeri, J. Bryan Unruh, Kevin E. Kenworthy, Ann R. S. Blount, Marco Schiavon, Alexander J. Reisinger, Basil V. Iannone
{"title":"亚热带气候条件下替代性草坪改造的氮沥滤和地下水补给","authors":"P. Agustin Boeri, J. Bryan Unruh, Kevin E. Kenworthy, Ann R. S. Blount, Marco Schiavon, Alexander J. Reisinger, Basil V. Iannone","doi":"10.1002/csc2.21381","DOIUrl":null,"url":null,"abstract":"Climate change, recurrent droughts, and increasing urban water demands have limited water availability in urban landscapes. Water quantity challenges have led to irrigation restrictions and turfgrass removal programs. An experiment was conducted at the University of Florida, West Florida Research and Education Center, Jay, FL, to evaluate the effect of turfgrass conversion to other landscape types on nutrient leaching and groundwater recharge. In April 2021, all surface vegetation was removed from existing turfgrass plots using a sod harvester. Thereafter, plots were planted or covered with three landscape types: a pollinator landscape with flowering forbs (<jats:italic>Mimosa sp</jats:italic>., <jats:italic>Coreopsis sp</jats:italic>., and <jats:italic>Phyla sp</jats:italic>.) + turfgrass (<jats:italic>Eremochloa ophiuroides</jats:italic>); a nitrogen (N)‐efficient lawn (<jats:italic>Arachis glabrata</jats:italic> + <jats:italic>Paspalum notatum</jats:italic>); and a low‐input landscape with unplanted woodchip mulch. Undisturbed turfgrass (<jats:italic>E. ophiuroides</jats:italic>) served as a control. For 2 years, leachate samples were collected weekly from previously installed 168‐L drainage lysimeters for NO<jats:sub>3</jats:sub>‐N and NH<jats:sub>4</jats:sub>‐N load determination. Temporal changes in landscape composition, groundwater recharge, water use, and soil bulk density were also quantified. While the mulch leached 44.7 kg ha<jats:sup>−1</jats:sup> NO<jats:sub>3</jats:sub>‐N year<jats:sup>−1</jats:sup>, this landscape still offers positive attributes, including erosion protection and water conservation. Conversely, the pollinator landscape minimized nitrogen leaching (8.3 kg ha<jats:sup>−1</jats:sup> NO<jats:sub>3</jats:sub>‐N year<jats:sup>−1</jats:sup>) due to their relatively greater water use rates (3.56 mm day<jats:sup>−1</jats:sup>). The turfgrass and nitrogen‐efficient lawn returned ∼35% of the water inputs as groundwater recharge while maintaining relatively low nitrogen leaching (3.6 and 2.7 kg ha<jats:sup>−1</jats:sup> NO<jats:sub>3</jats:sub>‐N year<jats:sup>−1</jats:sup>, respectively), making these landscapes efficient for protecting both water quality and quantity.","PeriodicalId":10849,"journal":{"name":"Crop Science","volume":"97 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen leaching and groundwater recharge of alternative lawn conversions in subtropical climates\",\"authors\":\"P. Agustin Boeri, J. Bryan Unruh, Kevin E. Kenworthy, Ann R. S. Blount, Marco Schiavon, Alexander J. Reisinger, Basil V. Iannone\",\"doi\":\"10.1002/csc2.21381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate change, recurrent droughts, and increasing urban water demands have limited water availability in urban landscapes. Water quantity challenges have led to irrigation restrictions and turfgrass removal programs. An experiment was conducted at the University of Florida, West Florida Research and Education Center, Jay, FL, to evaluate the effect of turfgrass conversion to other landscape types on nutrient leaching and groundwater recharge. In April 2021, all surface vegetation was removed from existing turfgrass plots using a sod harvester. Thereafter, plots were planted or covered with three landscape types: a pollinator landscape with flowering forbs (<jats:italic>Mimosa sp</jats:italic>., <jats:italic>Coreopsis sp</jats:italic>., and <jats:italic>Phyla sp</jats:italic>.) + turfgrass (<jats:italic>Eremochloa ophiuroides</jats:italic>); a nitrogen (N)‐efficient lawn (<jats:italic>Arachis glabrata</jats:italic> + <jats:italic>Paspalum notatum</jats:italic>); and a low‐input landscape with unplanted woodchip mulch. Undisturbed turfgrass (<jats:italic>E. ophiuroides</jats:italic>) served as a control. For 2 years, leachate samples were collected weekly from previously installed 168‐L drainage lysimeters for NO<jats:sub>3</jats:sub>‐N and NH<jats:sub>4</jats:sub>‐N load determination. Temporal changes in landscape composition, groundwater recharge, water use, and soil bulk density were also quantified. While the mulch leached 44.7 kg ha<jats:sup>−1</jats:sup> NO<jats:sub>3</jats:sub>‐N year<jats:sup>−1</jats:sup>, this landscape still offers positive attributes, including erosion protection and water conservation. Conversely, the pollinator landscape minimized nitrogen leaching (8.3 kg ha<jats:sup>−1</jats:sup> NO<jats:sub>3</jats:sub>‐N year<jats:sup>−1</jats:sup>) due to their relatively greater water use rates (3.56 mm day<jats:sup>−1</jats:sup>). The turfgrass and nitrogen‐efficient lawn returned ∼35% of the water inputs as groundwater recharge while maintaining relatively low nitrogen leaching (3.6 and 2.7 kg ha<jats:sup>−1</jats:sup> NO<jats:sub>3</jats:sub>‐N year<jats:sup>−1</jats:sup>, respectively), making these landscapes efficient for protecting both water quality and quantity.\",\"PeriodicalId\":10849,\"journal\":{\"name\":\"Crop Science\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/csc2.21381\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/csc2.21381","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Nitrogen leaching and groundwater recharge of alternative lawn conversions in subtropical climates
Climate change, recurrent droughts, and increasing urban water demands have limited water availability in urban landscapes. Water quantity challenges have led to irrigation restrictions and turfgrass removal programs. An experiment was conducted at the University of Florida, West Florida Research and Education Center, Jay, FL, to evaluate the effect of turfgrass conversion to other landscape types on nutrient leaching and groundwater recharge. In April 2021, all surface vegetation was removed from existing turfgrass plots using a sod harvester. Thereafter, plots were planted or covered with three landscape types: a pollinator landscape with flowering forbs (Mimosa sp., Coreopsis sp., and Phyla sp.) + turfgrass (Eremochloa ophiuroides); a nitrogen (N)‐efficient lawn (Arachis glabrata + Paspalum notatum); and a low‐input landscape with unplanted woodchip mulch. Undisturbed turfgrass (E. ophiuroides) served as a control. For 2 years, leachate samples were collected weekly from previously installed 168‐L drainage lysimeters for NO3‐N and NH4‐N load determination. Temporal changes in landscape composition, groundwater recharge, water use, and soil bulk density were also quantified. While the mulch leached 44.7 kg ha−1 NO3‐N year−1, this landscape still offers positive attributes, including erosion protection and water conservation. Conversely, the pollinator landscape minimized nitrogen leaching (8.3 kg ha−1 NO3‐N year−1) due to their relatively greater water use rates (3.56 mm day−1). The turfgrass and nitrogen‐efficient lawn returned ∼35% of the water inputs as groundwater recharge while maintaining relatively low nitrogen leaching (3.6 and 2.7 kg ha−1 NO3‐N year−1, respectively), making these landscapes efficient for protecting both water quality and quantity.
期刊介绍:
Articles in Crop Science are of interest to researchers, policy makers, educators, and practitioners. The scope of articles in Crop Science includes crop breeding and genetics; crop physiology and metabolism; crop ecology, production, and management; seed physiology, production, and technology; turfgrass science; forage and grazing land ecology and management; genomics, molecular genetics, and biotechnology; germplasm collections and their use; and biomedical, health beneficial, and nutritionally enhanced plants. Crop Science publishes thematic collections of articles across its scope and includes topical Review and Interpretation, and Perspectives articles.