Andrew LaPoint,Jason M Singer,Daniel Ferguson,Trevor M Shew,M Katie Renkemeyer,Hector H Palacios,Rachael L Field,Sireeesha Yerrathota,Roshan Kumari,Mahalakshmi Shankaran,Gordon I Smith,Jun Yoshino,Mai He,Gary J Patti,Marc K Hellerstein,Samuel Klein,E Matthew Morris,Jonathan R Brestoff,Brian N Finck,Andrew Lutkewitte
{"title":"脂肪细胞脂蛋白 1 的表达与人类代谢健康有关,并能调节小鼠的全身代谢。","authors":"Andrew LaPoint,Jason M Singer,Daniel Ferguson,Trevor M Shew,M Katie Renkemeyer,Hector H Palacios,Rachael L Field,Sireeesha Yerrathota,Roshan Kumari,Mahalakshmi Shankaran,Gordon I Smith,Jun Yoshino,Mai He,Gary J Patti,Marc K Hellerstein,Samuel Klein,E Matthew Morris,Jonathan R Brestoff,Brian N Finck,Andrew Lutkewitte","doi":"10.1172/jci169722","DOIUrl":null,"url":null,"abstract":"Dysfunctional adipose tissue is believed to promote the development of hepatic steatosis and systemic insulin resistance, but many of the mechanisms involved are still unclear. Lipin 1 catalyzes the conversion of phosphatidic acid to diacylglycerol (DAG), the penultimate step of triglyceride synthesis, which is essential for lipid storage. Herein we found that adipose tissue LPIN1 expression is decreased in people with obesity compared to lean subjects, and low LPIN1 expression correlated with multi-tissue insulin resistance and increased rates of hepatic de novo lipogenesis. Comprehensive metabolic and multi-omic phenotyping demonstrated that adipocyte-specific Lpin1-/- mice had a metabolically-unhealthy phenotype, including liver and skeletal muscle insulin resistance, hepatic steatosis, increased hepatic de novo lipogenesis, and transcriptomic signatures of metabolically associated steatohepatitis that was exacerbated by high-fat diets. We conclude that adipocyte lipin 1-mediated lipid storage is vital for preserving adipose tissue and systemic metabolic health, and its loss predisposes mice to metabolically associated steatohepatitis.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adipocyte lipin 1 expression associates with human metabolic health and regulates systemic metabolism in mice.\",\"authors\":\"Andrew LaPoint,Jason M Singer,Daniel Ferguson,Trevor M Shew,M Katie Renkemeyer,Hector H Palacios,Rachael L Field,Sireeesha Yerrathota,Roshan Kumari,Mahalakshmi Shankaran,Gordon I Smith,Jun Yoshino,Mai He,Gary J Patti,Marc K Hellerstein,Samuel Klein,E Matthew Morris,Jonathan R Brestoff,Brian N Finck,Andrew Lutkewitte\",\"doi\":\"10.1172/jci169722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dysfunctional adipose tissue is believed to promote the development of hepatic steatosis and systemic insulin resistance, but many of the mechanisms involved are still unclear. Lipin 1 catalyzes the conversion of phosphatidic acid to diacylglycerol (DAG), the penultimate step of triglyceride synthesis, which is essential for lipid storage. Herein we found that adipose tissue LPIN1 expression is decreased in people with obesity compared to lean subjects, and low LPIN1 expression correlated with multi-tissue insulin resistance and increased rates of hepatic de novo lipogenesis. Comprehensive metabolic and multi-omic phenotyping demonstrated that adipocyte-specific Lpin1-/- mice had a metabolically-unhealthy phenotype, including liver and skeletal muscle insulin resistance, hepatic steatosis, increased hepatic de novo lipogenesis, and transcriptomic signatures of metabolically associated steatohepatitis that was exacerbated by high-fat diets. We conclude that adipocyte lipin 1-mediated lipid storage is vital for preserving adipose tissue and systemic metabolic health, and its loss predisposes mice to metabolically associated steatohepatitis.\",\"PeriodicalId\":520097,\"journal\":{\"name\":\"The Journal of Clinical Investigation\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Clinical Investigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1172/jci169722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci169722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adipocyte lipin 1 expression associates with human metabolic health and regulates systemic metabolism in mice.
Dysfunctional adipose tissue is believed to promote the development of hepatic steatosis and systemic insulin resistance, but many of the mechanisms involved are still unclear. Lipin 1 catalyzes the conversion of phosphatidic acid to diacylglycerol (DAG), the penultimate step of triglyceride synthesis, which is essential for lipid storage. Herein we found that adipose tissue LPIN1 expression is decreased in people with obesity compared to lean subjects, and low LPIN1 expression correlated with multi-tissue insulin resistance and increased rates of hepatic de novo lipogenesis. Comprehensive metabolic and multi-omic phenotyping demonstrated that adipocyte-specific Lpin1-/- mice had a metabolically-unhealthy phenotype, including liver and skeletal muscle insulin resistance, hepatic steatosis, increased hepatic de novo lipogenesis, and transcriptomic signatures of metabolically associated steatohepatitis that was exacerbated by high-fat diets. We conclude that adipocyte lipin 1-mediated lipid storage is vital for preserving adipose tissue and systemic metabolic health, and its loss predisposes mice to metabolically associated steatohepatitis.