{"title":"TREM2 通过 SHP1/BTK 轴抑制脂肪酸氧化,从而加重败血症。","authors":"Siqi Ming,Xingyu Li,Qiang Xiao,Siying Qu,Qiaohua Wang,Qiongyan Fang,Pingping Liang,Yating Xu,Jingwen Yang,Yongqiang Yang,Xi Huang,Yongjian Wu","doi":"10.1172/jci159400","DOIUrl":null,"url":null,"abstract":"Impaired fatty acid oxidation (FAO) and the therapeutic benefits of FAO restoration have been revealed in sepsis. However, the regulatory factors contributing to FAO dysfunction during sepsis remain inadequately clarified. In this study, we identified a subset of lipid-associated macrophages characterized by high expression of trigger receptor expressed on myeloid cells 2 (TREM2) and demonstrated that TREM2 acted as a suppressor of FAO to increase the susceptibility to sepsis. TREM2 expression was markedly up-regulated in sepsis patients and correlated with the severity of sepsis. Knock out of TREM2 in macrophages improved the survival rate and reduced inflammation and organ injuries of sepsis mice. Notably, TREM2-deficient mice exhibited decreased triglyceride accumulation and an enhanced FAO rate. Further observations showed that the blockade of FAO substantially abolished the alleviated symptoms observed in TREM2 knockout mice. Mechanically, we demonstrated that TREM2 interacted with the phosphatase SHP1 to inhibit Bruton tyrosine kinas (BTK)-mediated FAO in sepsis. Our findings expand the understanding of FAO dysfunction in sepsis and reveal TREM2 as a critical regulator of FAO, which may provide a promising target for the clinical treatment of sepsis.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TREM2 aggravates sepsis by inhibiting fatty acid oxidation via the SHP1/BTK axis.\",\"authors\":\"Siqi Ming,Xingyu Li,Qiang Xiao,Siying Qu,Qiaohua Wang,Qiongyan Fang,Pingping Liang,Yating Xu,Jingwen Yang,Yongqiang Yang,Xi Huang,Yongjian Wu\",\"doi\":\"10.1172/jci159400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Impaired fatty acid oxidation (FAO) and the therapeutic benefits of FAO restoration have been revealed in sepsis. However, the regulatory factors contributing to FAO dysfunction during sepsis remain inadequately clarified. In this study, we identified a subset of lipid-associated macrophages characterized by high expression of trigger receptor expressed on myeloid cells 2 (TREM2) and demonstrated that TREM2 acted as a suppressor of FAO to increase the susceptibility to sepsis. TREM2 expression was markedly up-regulated in sepsis patients and correlated with the severity of sepsis. Knock out of TREM2 in macrophages improved the survival rate and reduced inflammation and organ injuries of sepsis mice. Notably, TREM2-deficient mice exhibited decreased triglyceride accumulation and an enhanced FAO rate. Further observations showed that the blockade of FAO substantially abolished the alleviated symptoms observed in TREM2 knockout mice. Mechanically, we demonstrated that TREM2 interacted with the phosphatase SHP1 to inhibit Bruton tyrosine kinas (BTK)-mediated FAO in sepsis. Our findings expand the understanding of FAO dysfunction in sepsis and reveal TREM2 as a critical regulator of FAO, which may provide a promising target for the clinical treatment of sepsis.\",\"PeriodicalId\":520097,\"journal\":{\"name\":\"The Journal of Clinical Investigation\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Clinical Investigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1172/jci159400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci159400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TREM2 aggravates sepsis by inhibiting fatty acid oxidation via the SHP1/BTK axis.
Impaired fatty acid oxidation (FAO) and the therapeutic benefits of FAO restoration have been revealed in sepsis. However, the regulatory factors contributing to FAO dysfunction during sepsis remain inadequately clarified. In this study, we identified a subset of lipid-associated macrophages characterized by high expression of trigger receptor expressed on myeloid cells 2 (TREM2) and demonstrated that TREM2 acted as a suppressor of FAO to increase the susceptibility to sepsis. TREM2 expression was markedly up-regulated in sepsis patients and correlated with the severity of sepsis. Knock out of TREM2 in macrophages improved the survival rate and reduced inflammation and organ injuries of sepsis mice. Notably, TREM2-deficient mice exhibited decreased triglyceride accumulation and an enhanced FAO rate. Further observations showed that the blockade of FAO substantially abolished the alleviated symptoms observed in TREM2 knockout mice. Mechanically, we demonstrated that TREM2 interacted with the phosphatase SHP1 to inhibit Bruton tyrosine kinas (BTK)-mediated FAO in sepsis. Our findings expand the understanding of FAO dysfunction in sepsis and reveal TREM2 as a critical regulator of FAO, which may provide a promising target for the clinical treatment of sepsis.