利用麦克斯韦方程的广义边界条件模拟光分子效应

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Gang Chen
{"title":"利用麦克斯韦方程的广义边界条件模拟光分子效应","authors":"Gang Chen","doi":"10.1038/s42005-024-01826-z","DOIUrl":null,"url":null,"abstract":"We recently demonstrated via experiments in hydrogels and at a single air-water interface the photomolecular effect: photons directly cleaving off water molecular clusters in the visible spectrum where bulk water has negligible absorption. To model single interface experiments, here we re-derive generalized boundary conditions for Maxwell equations by assuming a transition region of the electromagnetic fields across the interface, leading naturally to the Feibelman parameters used before to describe surface photoelectric and surface plasmon effects on metals. This generalization leads to modifications of the Fresnel coefficients and an expression for the surface absorptance that can reasonably explain trends in our single-interface experimental data on the angle and polarization dependence of the beam deflection. Our work provides further support for the existence of the photomolecular effect, suggests that surface absorption should exist in many materials, and lays a foundation for assessing the impacts of such surface absorption based on the Maxwell equations. The newly discovered photomolecular effect reveals that photons can evaporate water clusters in the visible spectrum where bulk water absorbs little. This work generalizes boundary conditions for Maxwell’s equations with Feibelman parameters and presents modified Fresnel coefficients and interfacial absorptance predicting trends consistent with experiments.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-10"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01826-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Modeling photomolecular effect using generalized boundary conditions for Maxwell equations\",\"authors\":\"Gang Chen\",\"doi\":\"10.1038/s42005-024-01826-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We recently demonstrated via experiments in hydrogels and at a single air-water interface the photomolecular effect: photons directly cleaving off water molecular clusters in the visible spectrum where bulk water has negligible absorption. To model single interface experiments, here we re-derive generalized boundary conditions for Maxwell equations by assuming a transition region of the electromagnetic fields across the interface, leading naturally to the Feibelman parameters used before to describe surface photoelectric and surface plasmon effects on metals. This generalization leads to modifications of the Fresnel coefficients and an expression for the surface absorptance that can reasonably explain trends in our single-interface experimental data on the angle and polarization dependence of the beam deflection. Our work provides further support for the existence of the photomolecular effect, suggests that surface absorption should exist in many materials, and lays a foundation for assessing the impacts of such surface absorption based on the Maxwell equations. The newly discovered photomolecular effect reveals that photons can evaporate water clusters in the visible spectrum where bulk water absorbs little. This work generalizes boundary conditions for Maxwell’s equations with Feibelman parameters and presents modified Fresnel coefficients and interfacial absorptance predicting trends consistent with experiments.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01826-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01826-z\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01826-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近,我们通过在水凝胶和单一空气-水界面的实验证明了光分子效应:光子在可见光谱中直接裂解水分子团,而在可见光谱中,水分子团的吸收可以忽略不计。为了模拟单界面实验,我们在这里重新推导了麦克斯韦方程的广义边界条件,假设电磁场穿过界面的过渡区域,自然而然地得出了之前用于描述金属表面光电效应和表面等离子效应的费伯曼参数。这种概括导致了菲涅尔系数的修改和表面吸收率的表达式,可以合理地解释我们关于光束偏转角度和偏振依赖性的单界面实验数据的趋势。我们的工作为光分子效应的存在提供了进一步的支持,表明表面吸收应该存在于许多材料中,并为根据麦克斯韦方程评估这种表面吸收的影响奠定了基础。新发现的光分子效应揭示了光子可以在可见光谱中蒸发水团,而在可见光谱中,水团对光的吸收很少。这项研究利用费伯曼参数对麦克斯韦方程的边界条件进行了概括,并提出了修正的菲涅尔系数和界面吸收率,预测了与实验相一致的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modeling photomolecular effect using generalized boundary conditions for Maxwell equations

Modeling photomolecular effect using generalized boundary conditions for Maxwell equations
We recently demonstrated via experiments in hydrogels and at a single air-water interface the photomolecular effect: photons directly cleaving off water molecular clusters in the visible spectrum where bulk water has negligible absorption. To model single interface experiments, here we re-derive generalized boundary conditions for Maxwell equations by assuming a transition region of the electromagnetic fields across the interface, leading naturally to the Feibelman parameters used before to describe surface photoelectric and surface plasmon effects on metals. This generalization leads to modifications of the Fresnel coefficients and an expression for the surface absorptance that can reasonably explain trends in our single-interface experimental data on the angle and polarization dependence of the beam deflection. Our work provides further support for the existence of the photomolecular effect, suggests that surface absorption should exist in many materials, and lays a foundation for assessing the impacts of such surface absorption based on the Maxwell equations. The newly discovered photomolecular effect reveals that photons can evaporate water clusters in the visible spectrum where bulk water absorbs little. This work generalizes boundary conditions for Maxwell’s equations with Feibelman parameters and presents modified Fresnel coefficients and interfacial absorptance predicting trends consistent with experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信