观测蒸发波的奇偶时对称性

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Zhaoxian Chen, Huan He, Huanan Li, Meijie Li, Jun-long Kou, Yan-qing Lu, Jingjun Xu, Andrea Alù
{"title":"观测蒸发波的奇偶时对称性","authors":"Zhaoxian Chen, Huan He, Huanan Li, Meijie Li, Jun-long Kou, Yan-qing Lu, Jingjun Xu, Andrea Alù","doi":"10.1038/s42005-024-01816-1","DOIUrl":null,"url":null,"abstract":"Parity-time (PT) symmetry has enabled the demonstration of fascinating wave phenomena in non-Hermitian systems characterized by precisely balanced gain and loss. Until now, the exploration and observation of PT symmetry in scattering settings have largely been limited to propagating waves. Here, we demonstrate a versatile coupled-resonator acoustic waveguide (CRAW) system that enables the observation of PT-symmetric scattering responses for evanescent waves within a bandgap. By examining the generalized scattering matrix in the evanescent wave regime, we observe hallmark PT-symmetric phenomena—including phase transitions at an exceptional point, anisotropic transmission resonances, and laser-absorber modes—in systems that do not require balanced distributions of gain and loss. Owing to the peculiar energy transfer features of evanescent waves, our results not only demonstrate a distinct pathway for observing PT symmetry, but also enable strategies for exotic energy tunneling mechanisms, paving fresh directions for wave engineering grounded in non-Hermitian physics. Non-Hermitian physics and parity-time (PT) symmetry are of broad interest in classical wave systems. This work demonstrates evanescent wave manipulation and scattering control based on PT symmetry in a versatile coupled-resonator acoustic waveguide (CRAW) system, which not only extends the framework of non-Hermitian physics but also offers strategies for near-field manipulation and control.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01816-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Observation of parity-time symmetry for evanescent waves\",\"authors\":\"Zhaoxian Chen, Huan He, Huanan Li, Meijie Li, Jun-long Kou, Yan-qing Lu, Jingjun Xu, Andrea Alù\",\"doi\":\"10.1038/s42005-024-01816-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parity-time (PT) symmetry has enabled the demonstration of fascinating wave phenomena in non-Hermitian systems characterized by precisely balanced gain and loss. Until now, the exploration and observation of PT symmetry in scattering settings have largely been limited to propagating waves. Here, we demonstrate a versatile coupled-resonator acoustic waveguide (CRAW) system that enables the observation of PT-symmetric scattering responses for evanescent waves within a bandgap. By examining the generalized scattering matrix in the evanescent wave regime, we observe hallmark PT-symmetric phenomena—including phase transitions at an exceptional point, anisotropic transmission resonances, and laser-absorber modes—in systems that do not require balanced distributions of gain and loss. Owing to the peculiar energy transfer features of evanescent waves, our results not only demonstrate a distinct pathway for observing PT symmetry, but also enable strategies for exotic energy tunneling mechanisms, paving fresh directions for wave engineering grounded in non-Hermitian physics. Non-Hermitian physics and parity-time (PT) symmetry are of broad interest in classical wave systems. This work demonstrates evanescent wave manipulation and scattering control based on PT symmetry in a versatile coupled-resonator acoustic waveguide (CRAW) system, which not only extends the framework of non-Hermitian physics but also offers strategies for near-field manipulation and control.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01816-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01816-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01816-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

奇偶时(PT)对称性使我们能够在增益和损耗精确平衡的非赫米提系统中展示迷人的波现象。迄今为止,在散射环境中对 PT 对称性的探索和观察主要局限于传播波。在这里,我们展示了一种多功能耦合谐振器声波导体(CRAW)系统,它可以观测带隙内蒸发波的 PT 对称散射响应。通过研究蒸发波制度下的广义散射矩阵,我们在不需要增益和损耗平衡分布的系统中观察到了标志性的 PT 对称现象--包括特殊点的相变、各向异性传输共振和激光吸收器模式。由于蒸发波具有奇特的能量转移特征,我们的研究结果不仅展示了观察 PT 对称性的独特途径,还为奇特的能量隧道机制提供了策略,为基于非赫米提物理学的波工程学铺平了新的道路。非赫米提物理学和奇偶时(PT)对称性在经典波系统中具有广泛的意义。这项研究在多功能耦合谐振器声波导(CRAW)系统中展示了基于 PT 对称性的蒸发波操纵和散射控制,不仅扩展了非赫米提物理学的框架,还提供了近场操纵和控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Observation of parity-time symmetry for evanescent waves

Observation of parity-time symmetry for evanescent waves
Parity-time (PT) symmetry has enabled the demonstration of fascinating wave phenomena in non-Hermitian systems characterized by precisely balanced gain and loss. Until now, the exploration and observation of PT symmetry in scattering settings have largely been limited to propagating waves. Here, we demonstrate a versatile coupled-resonator acoustic waveguide (CRAW) system that enables the observation of PT-symmetric scattering responses for evanescent waves within a bandgap. By examining the generalized scattering matrix in the evanescent wave regime, we observe hallmark PT-symmetric phenomena—including phase transitions at an exceptional point, anisotropic transmission resonances, and laser-absorber modes—in systems that do not require balanced distributions of gain and loss. Owing to the peculiar energy transfer features of evanescent waves, our results not only demonstrate a distinct pathway for observing PT symmetry, but also enable strategies for exotic energy tunneling mechanisms, paving fresh directions for wave engineering grounded in non-Hermitian physics. Non-Hermitian physics and parity-time (PT) symmetry are of broad interest in classical wave systems. This work demonstrates evanescent wave manipulation and scattering control based on PT symmetry in a versatile coupled-resonator acoustic waveguide (CRAW) system, which not only extends the framework of non-Hermitian physics but also offers strategies for near-field manipulation and control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信