{"title":"视网膜变性疾病中的翻译后修饰:分子基础和治疗的最新进展","authors":"Ke Yao, Qianxue Mou, Zhen Jiang, Yin Zhao","doi":"10.1002/brx2.70005","DOIUrl":null,"url":null,"abstract":"<p>Noninherited diseases and age-associated vision loss are often associated with retinal degeneration. The retina is a postmitotic neural tissue lacking endogenous regeneration capacity. Therefore, understanding the mechanism of retinal degeneration in diseases is pivotal. Posttranslational modifications (PTMs) determine protein function during physiological and pathological processes, including signal transduction, protein localization, and protein activation. Advanced detection technologies have revealed over 400 different PTMs including acetylation, methylation, phosphorylation, ubiquitination and SUMOylation. Here, we discuss PTMs in retinal degeneration diseases to aid in our understanding of their molecular basis and suggest potential future clinical treatment.</p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":"2 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.70005","citationCount":"0","resultStr":"{\"title\":\"Posttranslational modifications in retinal degeneration diseases: An update on the molecular basis and treatment\",\"authors\":\"Ke Yao, Qianxue Mou, Zhen Jiang, Yin Zhao\",\"doi\":\"10.1002/brx2.70005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Noninherited diseases and age-associated vision loss are often associated with retinal degeneration. The retina is a postmitotic neural tissue lacking endogenous regeneration capacity. Therefore, understanding the mechanism of retinal degeneration in diseases is pivotal. Posttranslational modifications (PTMs) determine protein function during physiological and pathological processes, including signal transduction, protein localization, and protein activation. Advanced detection technologies have revealed over 400 different PTMs including acetylation, methylation, phosphorylation, ubiquitination and SUMOylation. Here, we discuss PTMs in retinal degeneration diseases to aid in our understanding of their molecular basis and suggest potential future clinical treatment.</p>\",\"PeriodicalId\":94303,\"journal\":{\"name\":\"Brain-X\",\"volume\":\"2 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.70005\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/brx2.70005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-X","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brx2.70005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Posttranslational modifications in retinal degeneration diseases: An update on the molecular basis and treatment
Noninherited diseases and age-associated vision loss are often associated with retinal degeneration. The retina is a postmitotic neural tissue lacking endogenous regeneration capacity. Therefore, understanding the mechanism of retinal degeneration in diseases is pivotal. Posttranslational modifications (PTMs) determine protein function during physiological and pathological processes, including signal transduction, protein localization, and protein activation. Advanced detection technologies have revealed over 400 different PTMs including acetylation, methylation, phosphorylation, ubiquitination and SUMOylation. Here, we discuss PTMs in retinal degeneration diseases to aid in our understanding of their molecular basis and suggest potential future clinical treatment.