软连续机械手的数据驱动建模和高精度跟踪控制:实现多线电缆的机器人分类

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Yuan Gao, Zhi Chen, Fangxun Zhong, Xiang Li, Yun-Hui Liu
{"title":"软连续机械手的数据驱动建模和高精度跟踪控制:实现多线电缆的机器人分类","authors":"Yuan Gao,&nbsp;Zhi Chen,&nbsp;Fangxun Zhong,&nbsp;Xiang Li,&nbsp;Yun-Hui Liu","doi":"10.1002/aisy.202300827","DOIUrl":null,"url":null,"abstract":"<p>As a new class of robots, soft continuum manipulators have attracted attention due to their flexibility and compliance. However, these characteristics create challenges for precise modeling and control. This study proposes a hybrid offline and online data-driven scheme to achieve high-precision tracking control of a soft continuum manipulator. First, a novel multiscale deep neural network learns the manipulator model offline. Specifically, the feature fusion module extracts highly discriminative features and captures long-term dependencies from the temporal trajectory data. The self-attention module strengthens the ability to represent fusion features and enhances the model prediction accuracy. Then, the learnt model is updated using multisensor data online, and the proposed controller further compensates for the updated model and enhances the tracking accuracy in the movement stage. Finally, the experimental results demonstrate a significant improvement in motion accuracy under different trajectory-tracking scenarios (i.e., deviations of &lt;1 mm in position and &lt;0.8° in orientation). The example of the multiwire cable sorting proves the feasibility of the proposed scheme in high-precision industrial applications.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202300827","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Modeling and High-Precision Tracking Control of a Soft Continuum Manipulator: Enabling Robotic Sorting of Multiwire Cables\",\"authors\":\"Yuan Gao,&nbsp;Zhi Chen,&nbsp;Fangxun Zhong,&nbsp;Xiang Li,&nbsp;Yun-Hui Liu\",\"doi\":\"10.1002/aisy.202300827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a new class of robots, soft continuum manipulators have attracted attention due to their flexibility and compliance. However, these characteristics create challenges for precise modeling and control. This study proposes a hybrid offline and online data-driven scheme to achieve high-precision tracking control of a soft continuum manipulator. First, a novel multiscale deep neural network learns the manipulator model offline. Specifically, the feature fusion module extracts highly discriminative features and captures long-term dependencies from the temporal trajectory data. The self-attention module strengthens the ability to represent fusion features and enhances the model prediction accuracy. Then, the learnt model is updated using multisensor data online, and the proposed controller further compensates for the updated model and enhances the tracking accuracy in the movement stage. Finally, the experimental results demonstrate a significant improvement in motion accuracy under different trajectory-tracking scenarios (i.e., deviations of &lt;1 mm in position and &lt;0.8° in orientation). The example of the multiwire cable sorting proves the feasibility of the proposed scheme in high-precision industrial applications.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202300827\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202300827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202300827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

作为一类新型机器人,软连续机械手因其灵活性和顺应性而备受关注。然而,这些特性给精确建模和控制带来了挑战。本研究提出了一种离线和在线数据驱动的混合方案,以实现对软连续机械手的高精度跟踪控制。首先,新型多尺度深度神经网络离线学习机械手模型。具体来说,特征融合模块从时序轨迹数据中提取高区分度特征并捕捉长期依赖关系。自我关注模块加强了表示融合特征的能力,提高了模型预测的准确性。然后,利用多传感器数据对学习到的模型进行在线更新,提议的控制器进一步对更新后的模型进行补偿,并提高运动阶段的跟踪精度。最后,实验结果表明,在不同的轨迹跟踪情况下(即位置偏差为 1 毫米,方向偏差为 0.8°),运动精度都有显著提高。多线电缆分拣的实例证明了所提方案在高精度工业应用中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Data-Driven Modeling and High-Precision Tracking Control of a Soft Continuum Manipulator: Enabling Robotic Sorting of Multiwire Cables

Data-Driven Modeling and High-Precision Tracking Control of a Soft Continuum Manipulator: Enabling Robotic Sorting of Multiwire Cables

As a new class of robots, soft continuum manipulators have attracted attention due to their flexibility and compliance. However, these characteristics create challenges for precise modeling and control. This study proposes a hybrid offline and online data-driven scheme to achieve high-precision tracking control of a soft continuum manipulator. First, a novel multiscale deep neural network learns the manipulator model offline. Specifically, the feature fusion module extracts highly discriminative features and captures long-term dependencies from the temporal trajectory data. The self-attention module strengthens the ability to represent fusion features and enhances the model prediction accuracy. Then, the learnt model is updated using multisensor data online, and the proposed controller further compensates for the updated model and enhances the tracking accuracy in the movement stage. Finally, the experimental results demonstrate a significant improvement in motion accuracy under different trajectory-tracking scenarios (i.e., deviations of <1 mm in position and <0.8° in orientation). The example of the multiwire cable sorting proves the feasibility of the proposed scheme in high-precision industrial applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信