Xianhui S. Wan, Hua-Xia Sheng, Hui Shen, Wenbin Zou, Jin-Ming Tang, Wei Qin, Minhan Dai, Shuh-Ji Kao, Bess B. Ward
{"title":"尿素在维持寡营养海洋中氨氧化剂产生亚硝酸盐方面的意义","authors":"Xianhui S. Wan, Hua-Xia Sheng, Hui Shen, Wenbin Zou, Jin-Ming Tang, Wei Qin, Minhan Dai, Shuh-Ji Kao, Bess B. Ward","doi":"10.1029/2023GB007996","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Nitrification, the stepwise oxidation of ammonia to nitrate via nitrite, is a key process in the marine nitrogen cycle. Reported nitrite oxidation rates frequently exceed ammonia oxidation rates below the euphotic zone, raising the fundamental question of whether the two steps are balanced and if alternative sources contribute to nitrite production in the dark ocean. Here we present vertically resolved profiles of ammonia, urea, and nitrite oxidation rates and their kinetic traits in the oligotrophic Subtropical North Pacific. Our results show active urea-derived nitrogen oxidation (urea-N oxidation) in the presence of experimental ammonium amendment, suggesting direct urea utilization. The depth-integrated rates of urea-N oxidation and ammonia oxidation are comparable, demonstrating that urea-N oxidation is a significant source of nitrite. The additional nitrite from urea-N oxidation helps to balance the two steps of nitrification in our study region. Nitrifiers exhibit high affinity for their substrates, and the apparent half-saturation constants for ammonia and nitrite oxidation decrease with depth. The apparent half-saturation constant for urea-N oxidation is higher than that for ammonia oxidation and shows no clear vertical trend. Such kinetic traits may account for the relatively higher urea concentration than ammonium concentration in the ocean's interior. Moreover, a compilation of our results and reported data shows a trend of increased urea-N oxidation relative to ammonia oxidation from the eutrophic coastal zone to the oligotrophic open ocean. This trend reveals a substrate-dependent biogeographic distribution of urea-N oxidation across marine environments and provides new information on the balance and flux of the marine nitrification process.</p>\n </section>\n </div>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 10","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007996","citationCount":"0","resultStr":"{\"title\":\"Significance of Urea in Sustaining Nitrite Production by Ammonia Oxidizers in the Oligotrophic Ocean\",\"authors\":\"Xianhui S. Wan, Hua-Xia Sheng, Hui Shen, Wenbin Zou, Jin-Ming Tang, Wei Qin, Minhan Dai, Shuh-Ji Kao, Bess B. Ward\",\"doi\":\"10.1029/2023GB007996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Nitrification, the stepwise oxidation of ammonia to nitrate via nitrite, is a key process in the marine nitrogen cycle. Reported nitrite oxidation rates frequently exceed ammonia oxidation rates below the euphotic zone, raising the fundamental question of whether the two steps are balanced and if alternative sources contribute to nitrite production in the dark ocean. Here we present vertically resolved profiles of ammonia, urea, and nitrite oxidation rates and their kinetic traits in the oligotrophic Subtropical North Pacific. Our results show active urea-derived nitrogen oxidation (urea-N oxidation) in the presence of experimental ammonium amendment, suggesting direct urea utilization. The depth-integrated rates of urea-N oxidation and ammonia oxidation are comparable, demonstrating that urea-N oxidation is a significant source of nitrite. The additional nitrite from urea-N oxidation helps to balance the two steps of nitrification in our study region. Nitrifiers exhibit high affinity for their substrates, and the apparent half-saturation constants for ammonia and nitrite oxidation decrease with depth. The apparent half-saturation constant for urea-N oxidation is higher than that for ammonia oxidation and shows no clear vertical trend. Such kinetic traits may account for the relatively higher urea concentration than ammonium concentration in the ocean's interior. Moreover, a compilation of our results and reported data shows a trend of increased urea-N oxidation relative to ammonia oxidation from the eutrophic coastal zone to the oligotrophic open ocean. This trend reveals a substrate-dependent biogeographic distribution of urea-N oxidation across marine environments and provides new information on the balance and flux of the marine nitrification process.</p>\\n </section>\\n </div>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"38 10\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007996\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007996\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007996","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Significance of Urea in Sustaining Nitrite Production by Ammonia Oxidizers in the Oligotrophic Ocean
Nitrification, the stepwise oxidation of ammonia to nitrate via nitrite, is a key process in the marine nitrogen cycle. Reported nitrite oxidation rates frequently exceed ammonia oxidation rates below the euphotic zone, raising the fundamental question of whether the two steps are balanced and if alternative sources contribute to nitrite production in the dark ocean. Here we present vertically resolved profiles of ammonia, urea, and nitrite oxidation rates and their kinetic traits in the oligotrophic Subtropical North Pacific. Our results show active urea-derived nitrogen oxidation (urea-N oxidation) in the presence of experimental ammonium amendment, suggesting direct urea utilization. The depth-integrated rates of urea-N oxidation and ammonia oxidation are comparable, demonstrating that urea-N oxidation is a significant source of nitrite. The additional nitrite from urea-N oxidation helps to balance the two steps of nitrification in our study region. Nitrifiers exhibit high affinity for their substrates, and the apparent half-saturation constants for ammonia and nitrite oxidation decrease with depth. The apparent half-saturation constant for urea-N oxidation is higher than that for ammonia oxidation and shows no clear vertical trend. Such kinetic traits may account for the relatively higher urea concentration than ammonium concentration in the ocean's interior. Moreover, a compilation of our results and reported data shows a trend of increased urea-N oxidation relative to ammonia oxidation from the eutrophic coastal zone to the oligotrophic open ocean. This trend reveals a substrate-dependent biogeographic distribution of urea-N oxidation across marine environments and provides new information on the balance and flux of the marine nitrification process.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.